The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 17 of 17

Showing per page

Order by Relevance | Title | Year of publication

A method of holomorphic retractions and pseudoinverse matrices in the theory of continuation of δ-tempered functions

Marek Jarnicki — 1987

CONTENTS§1. Introduction.................................................................................................................5§2. Basic properties of δ-tempered holomorphic functions...............................................8§3. Holomorphic continuation and holomorphic retractions.............................................20§4. Continuation from regular neighbourhoods...............................................................32§5. Continuation from δ-regular submanifolds;...

A remark on separate holomorphy

Marek JarnickiPeter Pflug — 2006

Studia Mathematica

Let X be a Riemann domain over k × . If X is a domain of holomorphy with respect to a family ℱ ⊂(X), then there exists a pluripolar set P k such that every slice X a of X with a∉ P is a region of holomorphy with respect to the family f | X a : f .

An extension theorem for separately holomorphic functions with analytic singularities

Marek JarnickiPeter Pflug — 2003

Annales Polonici Mathematici

Let D j k j be a pseudoconvex domain and let A j D j be a locally pluriregular set, j = 1,...,N. Put X : = j = 1 N A × . . . × A j - 1 × D j × A j + 1 × . . . × A N k + . . . + k N . Let U be an open connected neighborhood of X and let M ⊊ U be an analytic subset. Then there exists an analytic subset M̂ of the “envelope of holomorphy” X̂ of X with M̂ ∩ X ⊂ M such that for every function f separately holomorphic on X∖M there exists an f̂ holomorphic on X̂∖M̂ with f ̂ | X M = f . The result generalizes special cases which were studied in [Ökt 1998], [Ökt 1999], [Sic 2001], and [Jar-Pfl 2001].

Cross theorem

Marek JarnickiPeter Pflug — 2001

Annales Polonici Mathematici

Let D,G ⊂ ℂ be domains, let A ⊂ D, B ⊂ G be locally regular sets, and let X:= (D×B)∪(A×G). Assume that A is a Borel set. Let M be a proper analytic subset of an open neighborhood of X. Then there exists a pure 1-dimensional analytic subset M̂ of the envelope of holomorphy X̂ of X such that any function separately holomorphic on X∖M extends to a holomorphic function on X̂ ∖M̂. The result generalizes special cases which were studied in [Ökt 1998], [Ökt 1999], and [Sic 2000].

Page 1

Download Results (CSV)