Geodesics for convex complex ellipsoids

Marek Jarnicki; Peter Pflug; Rein Zeinstra

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 4, page 535-543
  • ISSN: 0391-173X

How to cite

top

Jarnicki, Marek, Pflug, Peter, and Zeinstra, Rein. "Geodesics for convex complex ellipsoids." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.4 (1993): 535-543. <http://eudml.org/doc/84159>.

@article{Jarnicki1993,
author = {Jarnicki, Marek, Pflug, Peter, Zeinstra, Rein},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex ellipsoid; complex geodesics; Kobayashi distance},
language = {eng},
number = {4},
pages = {535-543},
publisher = {Scuola normale superiore},
title = {Geodesics for convex complex ellipsoids},
url = {http://eudml.org/doc/84159},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Jarnicki, Marek
AU - Pflug, Peter
AU - Zeinstra, Rein
TI - Geodesics for convex complex ellipsoids
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 4
SP - 535
EP - 543
LA - eng
KW - complex ellipsoid; complex geodesics; Kobayashi distance
UR - http://eudml.org/doc/84159
ER -

References

top
  1. [Aba] M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, 1989. Zbl0747.32002MR1098711
  2. [BFKKMP] B.E. Blank - D. Fan - D. Klein - S.G. Krantz - D. Ma - M.-Y. Pang, The Kobayashi metric of a complex ellipsoid in C2, preprint (1991). 
  3. [Din] S. Dineen, The Schwarz Lemma, Clarendon Press, Oxford, 1989. Zbl0708.46046MR1033739
  4. [Gar] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024MR628971
  5. [Gen] G. Gentili, Regular complex geodesics in the domain D n={(z1,...,zn)∈Cn: |z1|+...+|zn|&lt;1}, Springer Lecture Notes in Math.1275 (1987), 235-252. 
  6. [Jar-Pfl] M. Jarnicki - P. Pflug, Invariant Distances and Metrics in Complex Analysis, W. de Gruyter & Co. (to appear). Zbl0789.32001MR1242120
  7. [Lem] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math.8 (1982), 257-261. Zbl0509.32015MR690838
  8. [Pol] E.A. Poletskiĭ, The Euler-Lagrange equations for extremal holomorphic mappings of the unit disc, Michigan Math. J.30 (1983), 317-333. Zbl0577.32022MR725784
  9. [Roy-Won] H. Royden, P.-M. Wong, Carathéodory and Kobayashi metric on convex domains, preprint (1983). 
  10. [Rud] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1974. Zbl0278.26001MR344043
  11. [Ves] E. Vesentini, Complex geodesics, Compositio Math.44 (1981), 375-394. Zbl0488.30015MR662466

Citations in EuDML Documents

top
  1. Binyamin Schwarz, Uri Srebro, Carathéodory balls and norm balls in H p , n = z n : z p < 1
  2. Armen Edigarian, On extremal mappings in complex ellipsoids
  3. Włodzimierz Zwonek, Carathéodory balls in convex complex ellipsoids
  4. Włodzimierz Zwonek, Effective formulas for complex geodesics in generalized pseudoellipsoids with applications
  5. Włodzimierz Zwonek, On symmetry of the pluricomplex Green function for ellipsoids
  6. Peter Pflug, Włodzimierz Zwonek, Effective formulas for invariant functions - case of elementary Reinhardt domains

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.