Geodesics for convex complex ellipsoids
Marek Jarnicki; Peter Pflug; Rein Zeinstra
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)
- Volume: 20, Issue: 4, page 535-543
- ISSN: 0391-173X
Access Full Article
topHow to cite
topJarnicki, Marek, Pflug, Peter, and Zeinstra, Rein. "Geodesics for convex complex ellipsoids." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.4 (1993): 535-543. <http://eudml.org/doc/84159>.
@article{Jarnicki1993,
author = {Jarnicki, Marek, Pflug, Peter, Zeinstra, Rein},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex ellipsoid; complex geodesics; Kobayashi distance},
language = {eng},
number = {4},
pages = {535-543},
publisher = {Scuola normale superiore},
title = {Geodesics for convex complex ellipsoids},
url = {http://eudml.org/doc/84159},
volume = {20},
year = {1993},
}
TY - JOUR
AU - Jarnicki, Marek
AU - Pflug, Peter
AU - Zeinstra, Rein
TI - Geodesics for convex complex ellipsoids
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 4
SP - 535
EP - 543
LA - eng
KW - complex ellipsoid; complex geodesics; Kobayashi distance
UR - http://eudml.org/doc/84159
ER -
References
top- [Aba] M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, 1989. Zbl0747.32002MR1098711
- [BFKKMP] B.E. Blank - D. Fan - D. Klein - S.G. Krantz - D. Ma - M.-Y. Pang, The Kobayashi metric of a complex ellipsoid in C2, preprint (1991).
- [Din] S. Dineen, The Schwarz Lemma, Clarendon Press, Oxford, 1989. Zbl0708.46046MR1033739
- [Gar] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024MR628971
- [Gen] G. Gentili, Regular complex geodesics in the domain D n={(z1,...,zn)∈Cn: |z1|+...+|zn|<1}, Springer Lecture Notes in Math.1275 (1987), 235-252.
- [Jar-Pfl] M. Jarnicki - P. Pflug, Invariant Distances and Metrics in Complex Analysis, W. de Gruyter & Co. (to appear). Zbl0789.32001MR1242120
- [Lem] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math.8 (1982), 257-261. Zbl0509.32015MR690838
- [Pol] E.A. Poletskiĭ, The Euler-Lagrange equations for extremal holomorphic mappings of the unit disc, Michigan Math. J.30 (1983), 317-333. Zbl0577.32022MR725784
- [Roy-Won] H. Royden, P.-M. Wong, Carathéodory and Kobayashi metric on convex domains, preprint (1983).
- [Rud] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1974. Zbl0278.26001MR344043
- [Ves] E. Vesentini, Complex geodesics, Compositio Math.44 (1981), 375-394. Zbl0488.30015MR662466
Citations in EuDML Documents
top- Binyamin Schwarz, Uri Srebro, Carathéodory balls and norm balls in
- Armen Edigarian, On extremal mappings in complex ellipsoids
- Włodzimierz Zwonek, Carathéodory balls in convex complex ellipsoids
- Włodzimierz Zwonek, Effective formulas for complex geodesics in generalized pseudoellipsoids with applications
- Włodzimierz Zwonek, On symmetry of the pluricomplex Green function for ellipsoids
- Peter Pflug, Włodzimierz Zwonek, Effective formulas for invariant functions - case of elementary Reinhardt domains
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.