The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Numerical Campedelli surfaces with fundamental group of order 9

Margarida Mendes LopesRita Pardini — 2008

Journal of the European Mathematical Society

We give explicit constructions of all the numerical Campedelli surfaces, i.e. the minimal surfaces of general type with K 2 = 2 and p g = 0 , whose fundamental group has order 9. There are three families, one with π 1 alg = 9 and two with π 1 alg = 3 2 . We also determine the base locus of the bicanonical system of these surfaces. It turns out that for the surfaces with π 1 alg = 9 and for one of the families of surfaces with π 1 alg = 3 2 the base locus consists of two points. To our knowlegde, these are the only known examples of surfaces of general...

Brill–Noether loci for divisors on irregular varieties

Margarida Mendes LopesRita PardiniPietro Pirola — 2014

Journal of the European Mathematical Society

We take up the study of the Brill-Noether loci W r ( L , X ) : = { η Pic 0 ( X ) | h 0 ( L η ) r + 1 } , where X is a smooth projective variety of dimension > 1 , L Pic ( X ) , and r 0 is an integer. By studying the infinitesimal structure of these loci and the Petri map (defined in analogy with the case of curves), we obtain lower bounds for h 0 ( K D ) , where D is a divisor that moves linearly on a smooth projective variety X of maximal Albanese dimension. In this way we sharpen the results of [Xi] and we generalize them to dimension > 2 . In the 2 -dimensional case we prove an...

Page 1

Download Results (CSV)