Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients
Let be a cylinder in and . It is studied the Cauchy-Dirichlet problem for the uniformly parabolic operator in the Morrey spaces , , , supposing the coefficients to belong to the class of functions with vanishing mean oscillation. There are obtained a priori estimates in Morrey spaces and Hölder regularity for the solution and its spatial derivatives.