The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we prove a covariant version of the Stinespring theorem for Hilbert C*-modules. Also, we show that there is a bijective correspondence between operator valued completely positive maps, (u′, u)-covariant with respect to the dynamical system (G, η, X) on Hilbert C*-modules and (u′, u)-covariant operator valued completely positive maps on the crossed product G ×η X of X by η.
We investigate the structure of the multiplier module of a Hilbert module over a pro-C*-algebra and the relationship between the set of all adjointable operators from a Hilbert A-module E to a Hilbert A-module F and the set of all adjointable operators from the multiplier module M(E) to M(F).
A KSGNS (Kasparov, Stinespring, Gel'fand, Naimark, Segal) type construction for strict (respectively, covariant non-degenerate) completely multi-positive linear maps between locally C*-algebras is described.
We show that two continuous inverse limit actions α and β of a locally compact group G on two pro-C *-algebras A and B are stably outer conjugate if and only if there is a full Hilbert A-module E and a continuous action u of G on E such that E and E *(the dual module of E) are countably generated in M(E)(the multiplier module of E), respectively M(E *) and the pair (E, u) implements a strong Morita equivalence between α and β. This is a generalization of a result of F. Combes [Proc. London Math....
In this paper the tensor products of Hilbert modules over locally -algebras are defined and their properties are studied. Thus we show that most of the basic properties of the tensor products of Hilbert -modules are also valid in the context of Hilbert modules over locally -algebras.
We define the crossed product of a pro-C*-algebra A by a Hilbert A-A pro-C*-bimodule and we show that it can be realized as an inverse limit of crossed products of C*-algebras by Hilbert C*-bimodules. We also prove that under some conditions the crossed products of two Hilbert pro-C*-bimodules over strongly Morita equivalent pro-C*-algebras are strongly Morita equivalent.
We introduce a notion of Morita equivalence for Hilbert C*-modules in terms of the Morita equivalence of the algebras of compact operators on Hilbert C*-modules. We investigate the properties of the new Morita equivalence. We apply our results to study continuous actions of locally compact groups on full Hilbert C*-modules. We also present an extension of Green's theorem in the context of Hilbert C*-modules.
We introduce a property of ergodic flows, called Property B. We prove that an ergodic hyperfinite equivalence relation of type III₀ whose associated flow has this property is not of product type. A consequence is that a properly ergodic flow with Property B is not approximately transitive. We use Property B to construct a non-AT flow which-up to conjugacy-is built under a function with the dyadic odometer as base automorphism.
Download Results (CSV)