In this paper we solve the basic fractional analogue of the classical infinite time horizon linear-quadratic gaussian regulator problem. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes an asymptotic quadratic performance criterion.
In this paper, the filtering problem is revisited in the basic Gaussian homogeneous linear system driven by fractional Brownian motions. We exhibit a simple approximate filter which is asymptotically optimal in the sense that, when the observation time tends to infinity, the variance of the corresponding filtering error converges to the same limit as for the exact optimal filter.
In this paper we solve the basic fractional analogue of the classical linear-quadratic Gaussian regulator problem in continuous-time with partial observation. For a controlled linear system where both the state and observation processes are driven by fractional Brownian motions, we describe explicitly the optimal control policy which minimizes a quadratic performance criterion. Actually, we show that a separation principle holds, , the optimal control separates into two stages based on optimal...
In this paper we solve the basic fractional
analogue of the classical infinite time horizon linear-quadratic Gaussian
regulator problem. For a completely observable controlled linear
system driven by a fractional Brownian motion, we describe
explicitely the optimal control policy which minimizes an
asymptotic quadratic performance criterion.
Download Results (CSV)