Congruences on strong semilattices of regular simple semigroups.
On the lattice of varieties of completely regular semigroups considered as algebras with the binary multiplication and unary inversion within maximal subgroups, we study the relations , , , , , , and . Here is the kernel relation, is the trace relation, and are the left and the right trace relations, respectively, for , is the core relation and is the local relation. We give an alternative definition for each of these relations of the form for some subclasses of ....
Relations introduced by Conrad, Drazin, Hartwig, Mitsch and Nambooripad are discussed on general, regular, completely semisimple and completely regular semigroups. Special properties of these relations as well as possible coincidence of some of them are investigated in some detail. The properties considered are mainly those of being a partial order or compatibility with multiplication. Coincidences of some of these relations are studied mainly on regular and completely regular semigroups.
Let be a regular semigroup and be the set of its idempotents. We call the sets and one-sided sandwich sets and characterize them abstractly where . For such that , , we call the sandwich set of . We characterize regular semigroups in which all (or all are right zero semigroups (respectively are trivial) in several ways including weak versions of compatibility of the natural order. For every , we also define as the set of all idempotets such that, for any congruence on...
An inverse semigroup is pure if , , implies ; it is cryptic if Green’s relation on is a congruence; it is a Clifford semigroup if it is a semillatice of groups. We characterize the pure ones by the absence of certain subsemigroups and a homomorphism from a concrete semigroup, and determine minimal nonpure varieties. Next we characterize the cryptic ones in terms of their group elements and also by a homomorphism of a semigroup constructed in the paper. We also characterize groups and...
Page 1 Next