In this note we give the Voronovskaya theorem for some linear positive operators of the Szasz-Mirakjan type defined in the space of functions continuous on [0,+∞) and having the exponential growth at infinity.
Some approximation properties of these operators are given in [3], [4].
This paper is motivated by Kirov results on generalized Bernstein polynomials given in (Kirov, G. H., A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153.). We introduce certain modified Meyer-König and Zeller operators in the space of differentiable functions of two variables and we study approximation properties for them. Some approximation properties of the Meyer-König and Zeller operators of differentiable functions of one variable are given in (Rempulska,...
Download Results (CSV)