Generalized Dirac Operators on Nonsmooth Manifolds and Maxwell's Equations.
Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type Δu - N(x,u) = F(x), equipped with Dirichlet and Neumann boundary conditions.
We study the method of layer potentials for manifolds with boundary and cylindrical ends. The fact that the boundary is non-compact prevents us from using the standard characterization of Fredholm or compact pseudo-differential operators between Sobolev spaces, as, for example, in the works of Fabes-Jodeit-Lewis and Kral-Wedland . We first study the layer potentials depending on a parameter on compact manifolds. This then yields the invertibility of the relevant boundary integral operators in the...
We prove -bounds for the Riesz transforms associated to the Hodge-Laplacian equipped with absolute and relative boundary conditions in a Lipschitz subdomain of a (smooth) Riemannian manifold for in a certain interval depending on the Lipschitz character of the domain.
Page 1