Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Fluides incompressibles horizontalement visqueux

Marius Paicu — 2003

Journées équations aux dérivées partielles

Motivé par l'étude des fluides tournants entre deux plaques, nous considérons l'équation tridimensionnelle de Navier-Stokes incompressible avec viscosité verticale nulle. Nous démontrons l'existence locale et l'unicité de la solution dans un espace critique (invariant par le changement d'échelle de l'équation). La solution est globale en temps si la donnée initiale est petite par rapport à la viscosité horizontale. Nous obtenons l'unicité de la solution dans un espace plus grand que l'espace des...

Équation anisotrope de Navier-Stokes dans des espaces critiques.

Marius Paicu — 2005

Revista Matemática Iberoamericana

We study the tridimensional Navier-Stokes equation when the value of the vertical viscosity is zero, in a critical space (invariant by the scaling). We shall prove local in time existence of the solution, respectively global in time when the initial data is small compared with the horizontal viscosity.

Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux

Raphaël DanchinMarius Paicu — 2008

Bulletin de la Société Mathématique de France

Dans cet article, on étudie le système de Boussinesq décrivant le phénomène de convection dans un fluide incompressible et visqueux. Ce système est composé des équations de Navier-Stokes incompressibles avec un terme de force verticale dont l’amplitude est transportée par le flot du champ de vitesses. On montre que les résultats classiques pour le système de Navier-Stokes standard demeurent vrais pour le système de Boussinesq bien qu’il n’y ait pas d’amortissement sur le terme de force. Plus précisément,...

Existence globale pour un fluide inhomogène

Hammadi AbidiMarius Paicu — 2007

Annales de l’institut Fourier

Dans cet article on s’intéresse à l’existence et l’unicité globale de solutions pour le système de Navier-Stokes à densité variable, lorsque la donnée initiale de la vitesse est dans l’espace de Besov homogène de régularité critique B p , 1 - 1 + N p ( N ) . Notons que ce résultat fait suite aux résultats de H. Abidi qui a généralisé le travail de R. Danchin. Toutefois, dans les travaux antérieurs, l’existence de la solution est obtenue pour 1 < p < 2 N et l’unicité est démontrée sous l’hypothèse plus restrictive 1 < p N . Notre résultat...

Page 1

Download Results (CSV)