The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
If (M,g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T* M given by v → g(v,−) between the tangent TM and the cotangent T* M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrTM between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT M of cotangent TM bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT* M depending on a Riemannian...
We determine all natural operators D transforming general connections Γ on fibred manifolds Y → M and torsion free classical linear connections ∇ on M into general connections D(Γ,∇) on the second order jet prolongation J2Y → M of Y → M
We determine all natural operators D transforming general connections Γ on fibred manifolds Y → M and torsion free classical linear connections ∇ on M into general connections D(Γ,∇) on the second order jet prolongation J2Y → M of Y → M.
We describe all natural operators transforming general connections on fibred manifolds and torsion-free classical linear connections on into general connections on the fibred product of copies of the first jet prolongation .
If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T*M given by v → g(v, –) between the tangent TM and the cotangent T*M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrT*M between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT*M of cotangent T*M bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT*M depending on a Riemannian...
Download Results (CSV)