Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Complex dynamical systems and the geometry of domains in Banach spaces

We consider semigroups of holomorphic self-mappings on domains in Hilbert and Banach spaces, and then develop a new dynamical approach to the study of geometric properties of biholomorphic mappings. We establish, for example, several flow invariance conditions and find parametric representations of semicomplete vector fields. In order to examine the asymptotic behavior of these semigroups, we use diverse tools such as hyperbolic metric theory and estimates of solutions of generalized differential...

On the Rogosinski radius for holomorphic mappings and some of its applications

Lev AizenbergMark ElinDavid Shoikhet — 2005

Studia Mathematica

The well known theorem of Rogosinski asserts that if the modulus of the sum of a power series is less than 1 in the open unit disk: | n = 0 a z | < 1 , |z| < 1, then all its partial sums are less than 1 in the disk of radius 1/2: | n = 0 k a z | < 1 , |z| < 1/2, and this radius is sharp. We present a generalization of this theorem to holomorphic mappings of the open unit ball into an arbitrary convex domain. Other multidimensional analogs of Rogosinski’s theorem as well as some applications to dynamical systems are considered....

Page 1

Download Results (CSV)