Notes on thermodynamic formalism for Anosov flows
We consider families of hyperbolic maps and describe conditions for a fixed reference point to have its orbit evenly distributed for maps corresponding to generic parameter values.
In this paper we study dynamical properties of linear actions by free groups via the induced action on projective space. This point of view allows us to introduce techniques from Thermodynamic Formalism. In particular, we obtain estimates on the growth of orbits and their limiting distribution on projective space.
We improve and subsume the conditions of Johansson and Öberg and Berbee for uniqueness of a -measure, i.e., a stationary distribution for chains with complete connections. In addition, we prove that these unique -measures have Bernoulli natural extensions. We also conclude that we have convergence in the Wasserstein metric of the iterates of the adjoint transfer operator to the -measure.
We study differentiability of topological conjugacies between expanding piecewise interval maps. If these conjugacies are not C¹, then their derivative vanishes Lebesgue almost everywhere. We show that in this case the Hausdorff dimension of the set of points for which the derivative of the conjugacy does not exist lies strictly between zero and one. Moreover, by employing the thermodynamic formalism, we show that this Hausdorff dimension can be determined explicitly in terms of the Lyapunov spectrum....
Page 1