The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give an example of a bounded discontinuous divergence-free solution of a linear elliptic system with measurable bounded coefficients in and a corresponding example for a .
We study properties of Lipschitz truncations of Sobolev functions
with constant and variable exponent.
As non-trivial applications we use the
Lipschitz truncations to provide a simplified proof of an existence result for incompressible power-law like fluids presented in
[Frehse
(2003) 1064–1083]. We also establish new existence results
to a class of incompressible electro-rheological fluids.
Download Results (CSV)