On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications
Lars Diening; Josef Málek; Mark Steinhauer
ESAIM: Control, Optimisation and Calculus of Variations (2008)
- Volume: 14, Issue: 2, page 211-232
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topDiening, Lars, Málek, Josef, and Steinhauer, Mark. "On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications." ESAIM: Control, Optimisation and Calculus of Variations 14.2 (2008): 211-232. <http://eudml.org/doc/250332>.
@article{Diening2008,
abstract = {
We study properties of Lipschitz truncations of Sobolev functions
with constant and variable exponent.
As non-trivial applications we use the
Lipschitz truncations to provide a simplified proof of an existence result for incompressible power-law like fluids presented in
[Frehse et al., SIAM J. Math. Anal34 (2003) 1064–1083]. We also establish new existence results
to a class of incompressible electro-rheological fluids.
},
author = {Diening, Lars, Málek, Josef, Steinhauer, Mark},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Lipschitz truncation of
$W^\{1,p\}_0/W^\{1,p(\cdot)\}_0$-functions; existence; weak solution;
incompressible fluid; power-law fluid; electro-rheological fluid; Lipschitz truncation of -functions},
language = {eng},
month = {3},
number = {2},
pages = {211-232},
publisher = {EDP Sciences},
title = {On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications},
url = {http://eudml.org/doc/250332},
volume = {14},
year = {2008},
}
TY - JOUR
AU - Diening, Lars
AU - Málek, Josef
AU - Steinhauer, Mark
TI - On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2008/3//
PB - EDP Sciences
VL - 14
IS - 2
SP - 211
EP - 232
AB -
We study properties of Lipschitz truncations of Sobolev functions
with constant and variable exponent.
As non-trivial applications we use the
Lipschitz truncations to provide a simplified proof of an existence result for incompressible power-law like fluids presented in
[Frehse et al., SIAM J. Math. Anal34 (2003) 1064–1083]. We also establish new existence results
to a class of incompressible electro-rheological fluids.
LA - eng
KW - Lipschitz truncation of
$W^{1,p}_0/W^{1,p(\cdot)}_0$-functions; existence; weak solution;
incompressible fluid; power-law fluid; electro-rheological fluid; Lipschitz truncation of -functions
UR - http://eudml.org/doc/250332
ER -
References
top- E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal86 (1984) 125–145.
- E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Rational Mech. Anal99 (1987) 261–281.
- E. Acerbi and N. Fusco, An approximation lemma for functions, in Material instabilities in continuum mechanics (Edinburgh, 1985–1986), Oxford Sci. Publ., Oxford Univ. Press, New York (1988) 1–5.
- L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal19 (1992) 581–597.
- M.E. Bogovskiĭ, Solutions of some problems of vector analysis, associated with the operators and , in Theory of cubature formulas and the application of functional analysis to problems of mathematical physics (Russian)149, Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980) 5–40.
- D. Cruz-Uribe, A. Fiorenza and C.J. Neugebauer, The maximal function on variable spaces. Ann. Acad. Sci. Fenn. Math28 (2003) 223–238.
- D. Cruz-Uribe, A. Fiorenza, J.M. Martell and C. Peréz, The boundedness of classical operators on variable spaces. Ann. Acad. Sci. Fenn. Math31 (2006) 239–264.
- G. Dal Maso and F. Murat, Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems. Nonlinear Anal31 (1998) 405–412.
- L. Diening, Maximal function on generalized Lebesgue spaces . Math. Inequal. Appl7 (2004) 245–253.
- L. Diening, Riesz potential and Sobolev embeddings of generalized Lebesgue and Sobolev spaces and . Math. Nachrichten268 (2004) 31–43.
- L. Diening and P. Hästö, Variable exponent trace spaces. Studia Math (2007) to appear.
- L. Diening and M. Růžička, Calderón-Zygmund operators on generalized Lebesgue spaces and problems related to fluid dynamics J. Reine Angew. Math563 (2003) 197–220.
- G. Dolzmann, N. Hungerbühler and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side. J. Reine Angew. Math520 (2000) 1–35.
- F. Duzaar and G. Mingione, The p-harmonic approximation and the regularity of p-harmonic maps. Calc. Var. Partial Diff. Eq20 (2004) 235–256.
- L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, (1992).
- X. Fan and D. Zhao, On the spaces and . J. Math. Anal. Appl263 (2001) 424–446.
- H. Federer, Geometric Measure Theory Band 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin-Heidelberg-New York (1969).
- J. Frehse, J. Málek, and M. Steinhauer, On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal34 (2003) 1064–1083 (electronic).
- M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. I, vol. 37 of Ergebnisse der Mathematik. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin (1998).
- L. Greco, T. Iwaniec and C. Sbordone, Variational integrals of nearly linear growth. Diff. Int. Eq10 (1997) 687–716.
- A. Huber, Die Divergenzgleichung in gewichteten Räumen und Flüssigkeiten mit -Struktur. Ph.D. thesis, University of Freiburg, Germany (2005).
- O. Kováčik and J. Rákosník, On spaces and . Czechoslovak Math. J41 (1991) 592–618.
- R. Landes, Quasimonotone versus pseudomonotone. Proc. Roy. Soc. Edinburgh Sect. A126 (1996) 705–717.
- A. Lerner, Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces. Math. Z251 (2005) 509–521.
- J. Málek and K.R. Rajagopal, Mathematical issues concerning the Navier-Stokes equations and some of its generalizations, in Evolutionary Equations, volume 2 of Handbook of differential equations, C. Dafermos and E. Feireisl Eds., Elsevier B. V. (2005) 371–459.
- J. Malý and W.P. Ziemer, Fine regularity of solutions of elliptic partial differential equations. American Mathematical Society, Providence, RI (1997).
- S. Müller, A sharp version of Zhang's theorem on truncating sequences of gradients. Trans. Amer. Math. Soc351 (1999) 4585–4597.
- A. Nekvinda, Hardy-Littlewood maximal operator on . Math. Inequal. Appl7 (2004) 255–265.
- P. Pedregal, Parametrized measures and variational principles. Progress in Nonlinear Diff. Eq. Applications, Birkhäuser Verlag, Basel (1997).
- L. Pick and M. Růžička, An example of a space on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math19 (2001) 369–371.
- K.R. Rajagopal and M. Růžička, On the modeling of electrorheological materials Mech. Res. Commun23 (1996) 401–407.
- K.R. Rajagopal and M. Růžička, Mathematical modeling of electrorheological materials. Cont. Mech. Thermodyn13 (2001) 59–78.
- M. Růžička, Electrorheological fluids: modeling and mathematical theory, Lect. Notes Math. 1748. Springer-Verlag, Berlin (2000).
- K. Zhang, On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form, in Partial differential equations (Tianjin, 1986), Lect. Notes Math1306 (1988) 262–277.
- K. Zhang, Biting theorems for Jacobians and their applications. Ann. Inst. H. Poincaré Anal. Non Linéaire7 (1990) 345–365.
- K. Zhang, A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci19 (1992) 313–326.
- K. Zhang, Remarks on perturbated systems with critical growth. Nonlinear Anal18 (1992) 1167–1179.
- W.P. Ziemer. Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics120. Springer-Verlag, Berlin (1989) 308.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.