Let be a system of disjoint subsets of . In this paper we examine the existence of an increasing sequence of natural numbers, , that is an asymptotic basis of all infinite elements of simultaneously, satisfying certain conditions on the rate of growth of the number of representations , for all sufficiently large and A theorem of P. Erdös is generalized.
Introduction. An old conjecture of P. Erdős repeated many times with a prize offer states that the counting function A(n) of a -sequence A satisfies
.
The conjecture was proved for r=2 by P. Erdős himself (see [5]) and in the cases r=4 and r=6 by J. C. M. Nash in [4] and by Xing-De Jia in [2] respectively. A very interesting proof of the conjecture in the case of all even r=2k by Xing-De Jia is to appear in the Journal of Number Theory [3].
Here we present a different, very short proof of Erdős’...
Download Results (CSV)