The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
[For the entire collection see Zbl 0699.00032.] A new cohomology theory suitable for understanding of nonlinear partial differential equations is presented. This paper is a continuation of the following paper of the author [Differ. geometry and its appl., Proc. Conf., Brno/Czech. 1986, Commun., 235-244 (1987; Zbl 0629.58033)].
In this paper basic differential invariants of generic hyperbolic Monge-Ampère equations with respect to contact transformations are constructed and the equivalence problem for these equations is solved.
Download Results (CSV)