The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Regularity of convex functions on Heisenberg groups

Zoltán M. BaloghMatthieu Rickly — 2003

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We discuss differentiability properties of convex functions on Heisenberg groups. We show that the notions of horizontal convexity (h-convexity) and viscosity convexity (v-convexity) are equivalent and that h-convex functions are locally Lipschitz continuous. Finally we exhibit Weierstrass-type h-convex functions which are nowhere differentiable in the vertical direction on a dense set or on a Cantor set of vertical lines.

Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric.

Zoltán M. BaloghMatthieu RicklyFrancesco Serra Cassano — 2003

Publicacions Matemàtiques

We compare the Hausdorff measures and dimensions with respect to the Euclidean and Heisenberg metrics on the first Heisenberg group. The result is a dimension jump described by two inequalities. The sharpness of our estimates is shown by examples. Moreover a comparison between Euclidean and H-rectifiability is given.

Page 1

Download Results (CSV)