Regularity of convex functions on Heisenberg groups
Zoltán M. Balogh; Matthieu Rickly
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 4, page 847-868
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topBalogh, Zoltán M., and Rickly, Matthieu. "Regularity of convex functions on Heisenberg groups." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.4 (2003): 847-868. <http://eudml.org/doc/84522>.
@article{Balogh2003,
abstract = {We discuss differentiability properties of convex functions on Heisenberg groups. We show that the notions of horizontal convexity (h-convexity) and viscosity convexity (v-convexity) are equivalent and that h-convex functions are locally Lipschitz continuous. Finally we exhibit Weierstrass-type h-convex functions which are nowhere differentiable in the vertical direction on a dense set or on a Cantor set of vertical lines.},
author = {Balogh, Zoltán M., Rickly, Matthieu},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {847-868},
publisher = {Scuola normale superiore},
title = {Regularity of convex functions on Heisenberg groups},
url = {http://eudml.org/doc/84522},
volume = {2},
year = {2003},
}
TY - JOUR
AU - Balogh, Zoltán M.
AU - Rickly, Matthieu
TI - Regularity of convex functions on Heisenberg groups
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 4
SP - 847
EP - 868
AB - We discuss differentiability properties of convex functions on Heisenberg groups. We show that the notions of horizontal convexity (h-convexity) and viscosity convexity (v-convexity) are equivalent and that h-convex functions are locally Lipschitz continuous. Finally we exhibit Weierstrass-type h-convex functions which are nowhere differentiable in the vertical direction on a dense set or on a Cantor set of vertical lines.
LA - eng
UR - http://eudml.org/doc/84522
ER -
References
top- [1] O. Alvarez – J.-M. Larsy – P.-L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl. (76) 9 (1997), 265-288. Zbl0890.49013MR1441987
- [2] L. Ambrosio – N. Fusco – D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford Science Publications, Clarendon Press, Oxford, 2000. Zbl0957.49001MR1857292
- [3] L. Ambrosio – V. Magnani, Weak differentiability of BV functions on stratified groups, Math. Z. (1) 245 (2003), 123-153. Zbl1048.49030MR2023957
- [4] Z. Balogh – M. Rickly – F. Serra Cassano, Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric, Publ. Mat. 47 (2003), 237-259. Zbl1060.28002MR1970902
- [5] T. Bieske, On -harmonic functions on the Heisenberg group, Comm. Partial Differential Equations 27 (2002), 727-762. Zbl1090.35063MR1900561
- [6] X. Cabre – L. Caffarelli, Fully nonlinear elliptic equations, AMS colloquium publications 43, AMS, Providence, RI, 1995. Zbl0834.35002MR1351007
- [7] M. Crandall – C. Evans – P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. (2) 282 (1984), 487-502. Zbl0543.35011MR732102
- [8] M. Crandall – H. Ishii – P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (1) 27 (1992), 1-67. Zbl0755.35015MR1118699
- [9] J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), 69-70. Zbl0475.43010MR619983
- [10] D. Danielli – N. Garofalo – D.-M. Nhieu, Notions of convexity in Carnot groups, Comm. Anal. Geom. (2) 11 (2003), 263-341. Zbl1077.22007MR2014879
- [11] D. Danielli – N. Garofalo – D.-M. Nhieu – F. Tournier, The theorem of Busemann-Feller-Alexandrov in Carnot groups, preprint. Zbl1071.22004MR2104079
- [12] L. Evans – R. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, 1992. Zbl0804.28001MR1158660
- [13] K. J. Falconer, “Fractal Geometry: Mathematical Foundations and Applications”, John Wiley & Sons, 1990. Zbl0689.28003MR1102677
- [14] C. E. Gutierrez – A. Montanari, Maximum and comparison principles for convex functions on the Heisenberg group, preprint. Zbl1056.35033MR2103838
- [15] C. E. Gutierrez – A. Montanari, On the second order derivatives of convex functions on the Heisenberg group, preprint. MR2075987
- [16] P. Lindquist – J. Manfredi – E. Saksman, Superharmonicity of nonlinear ground states, Rev. Math. Iberoam. 16 (2000), 17-27. Zbl0965.31002MR1768532
- [17] G. Lu – J. Manfredi – B. Stroffolini, Convex functions on the Heisenberg group, to appear in Calc. Var. Partial Differential Equations. Zbl1072.49019MR2027845
- [18] V. Magnani, Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions, preprint. Zbl1115.49004MR2208954
- [19] P. Mattila, “Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability”, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1995. Zbl0819.28004MR1333890
- [20] J. Manfredi – B. Stroffolini, A version of the Hopf-Lax formula in the Heisenberg group, Comm. Partial Differential Equations 27 (2002), 1139-1159. Zbl1080.49023MR1916559
- [21] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symmétriques de rang un, Ann. Math. 129 (1989), 1-60. Zbl0678.53042MR979599
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.