The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Le problème des arcs de Nash pour les singularités normales de surfaces affirme qu’il y aurait autant de familles d’arcs sur un germe de surface singulier que de diviseurs essentiels sur . Il est connu que ce problème se réduit à étudier les singularités quasi-rationnelles. L’objet de cet article est de répondre positivement au problème de Nash pour une famille d’hypersurfaces quasi-rationnelles non rationnelles. On applique la même méthode pour répondre positivement à ce problème dans les cas...
Download Results (CSV)