The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Comaximal graph of C ( X )

Mehdi Badie — 2016

Commentationes Mathematicae Universitatis Carolinae

In this article we study the comaximal graph Γ 2 ' C ( X ) of the ring C ( X ) . We have tried to associate the graph properties of Γ 2 ' C ( X ) , the ring properties of C ( X ) and the topological properties of X . Radius, girth, dominating number and clique number of the Γ 2 ' C ( X ) are investigated. We have shown that 2 Rad Γ 2 ' C ( X ) 3 and if | X | > 2 then girth Γ 2 ' C ( X ) = 3 . We give some topological properties of X equivalent to graph properties of Γ 2 ' C ( X ) . Finally we have proved that X is an almost P -space which does not have isolated points if and only if C ( X ) is an almost regular ring...

Fixed-place ideals in commutative rings

Ali Rezaei AliabadMehdi Badie — 2013

Commentationes Mathematicae Universitatis Carolinae

Let I be a semi-prime ideal. Then P Min ( I ) is called irredundant with respect to I if I P P Min ( I ) P . If I is the intersection of all irredundant ideals with respect to I , it is called a fixed-place ideal. If there are no irredundant ideals with respect to I , it is called an anti fixed-place ideal. We show that each semi-prime ideal has a unique representation as an intersection of a fixed-place ideal and an anti fixed-place ideal. We say the point p β X is a fixed-place point if O p ( X ) is a fixed-place ideal. In this situation...

Page 1

Download Results (CSV)