Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Quantum principal bundles and their characteristic classes

Mićo Đurđević — 1997

Banach Center Publications

A general theory of characteristic classes of quantum principal bundles is presented, incorporating basic ideas of classical Weil theory into the conceptual framework of noncommutative differential geometry. A purely cohomological interpretation of the Weil homomorphism is given, together with a geometrical interpretation via quantum invariant polynomials. A natural spectral sequence is described. Some interesting quantum phenomena appearing in the formalism are discussed.

Quantum classifying spaces and universal quantum characteristic classes

Mićo Đurđević — 1997

Banach Center Publications

A construction of the noncommutative-geometric counterparts of classical classifying spaces is presented, for general compact matrix quantum structure groups. A quantum analogue of the classical concept of the classifying map is introduced and analyzed. Interrelations with the abstract algebraic theory of quantum characteristic classes are discussed. Various non-equivalent approaches to defining universal characteristic classes are outlined.

Spinors in braided geometry

Mićo ĐurđevićZbigniew Oziewicz — 1996

Banach Center Publications

Let V be a ℂ-space, σ E n d ( V 2 ) be a pre-braid operator and let F l i n ( V 2 , ) . This paper offers a sufficient condition on (σ,F) that there exists a Clifford algebra Cl(V,σ,F) as the Chevalley F-dependent deformation of an exterior algebra C l ( V , σ , 0 ) V ( σ ) . If σ σ - 1 and F is non-degenerate then F is not a σ-morphism in σ-braided monoidal category. A spinor representation as a left Cl(V,σ,F)-module is identified with an exterior algebra over F-isotropic ℂ-subspace of V. We give a sufficient condition on braid σ that the spinor representation...

Page 1

Download Results (CSV)