The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

The linear refinement number and selection theory

Michał MachuraSaharon ShelahBoaz Tsaban — 2016

Fundamenta Mathematicae

The linear refinement number is the minimal cardinality of a centered family in [ ω ] ω such that no linearly ordered set in ( [ ω ] ω , * ) refines this family. The linear excluded middle number is a variation of . We show that these numbers estimate the critical cardinalities of a number of selective covering properties. We compare these numbers to the classical combinatorial cardinal characteristics of the continuum. We prove that = = in all models where the continuum is at most ℵ₂, and that the cofinality of is...

On the dimension of the space of ℝ-places of certain rational function fields

We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.

Page 1

Download Results (CSV)