The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On component groups of Jacobians of Drinfeld modular curves

Mihran Papikian — 2004

Annales de l'Institut Fourier

Let J 0 ( 𝔫 ) be the Jacobian variety of the Drinfeld modular curve X 0 ( 𝔫 ) over 𝔽 q ( t ) , where 𝔫 is an ideal in 𝔽 q [ t ] . Let 0 B J 0 ( 𝔫 ) A 0 be an exact sequence of abelian varieties. Assume B , as a subvariety of J 0 ( 𝔫 ) , is stable under the action of the Hecke algebra 𝕋 End ( J 0 ( 𝔫 ) ) . We give a criterion which is sufficient for the exactness of the induced sequence of component groups 0 Φ B , Φ J , Φ A , 0 of the Néron models of these abelian varieties over 𝔽 q [ [ 1 t ] ] . This criterion is always satisfied when either A or B is one-dimensional. Moreover, we prove that the sequence...

Page 1

Download Results (CSV)