On component groups of Jacobians of Drinfeld modular curves
- [1] Stanford University, Department of Mathematics, Stanford, CA 94305 (USA)
Annales de l'Institut Fourier (2004)
- Volume: 54, Issue: 7, page 2163-2199
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPapikian, Mihran. "On component groups of Jacobians of Drinfeld modular curves." Annales de l'Institut Fourier 54.7 (2004): 2163-2199. <http://eudml.org/doc/116171>.
@article{Papikian2004,
abstract = {Let $J_0(\{\mathfrak \{n\}\})$ be the Jacobian variety of the Drinfeld modular curve $X_0(\{\mathfrak \{n\}\})$ over $\{\mathbb \{F\}\}_q(t)$, where $\{\mathfrak \{n\}\}$ is an ideal in $\{\mathbb \{F\}\}_q[t]$. Let $0\rightarrow B
\rightarrow J_0(\{\mathfrak \{n\}\}) \rightarrow A \rightarrow 0$ be an exact sequence of abelian varieties. Assume $B$, as
a subvariety of $J_0(\{\mathfrak \{n\}\})$ , is stable under the action of the Hecke algebra $\{\mathbb \{T\}\} \subset $ End $ (J_0(\{\mathfrak \{n\}\}))$. We give a criterion which is sufficient for the
exactness of the induced sequence of component groups $0 \rightarrow \Phi _\{B, \infty \} \rightarrow \Phi _\{J, \infty \} \rightarrow \Phi _\{A, \infty \} \rightarrow 0$ of the Néron models of these abelian
varieties over $\{\mathbb \{F\}\}_q [\![\{1 \over t\}]\!]$. This criterion is always satisfied when
either $A$ or $B$ is one-dimensional. Moreover, we prove that the sequence of component
groups is always exact on $\ell $-power torsion for any prime $\ell $ not dividing $(q-1)$.
In particular, the sequence is always exact when $q=2$.},
affiliation = {Stanford University, Department of Mathematics, Stanford, CA 94305 (USA)},
author = {Papikian, Mihran},
journal = {Annales de l'Institut Fourier},
keywords = {Component groups; Drinfeld modular curves; monodromy pairing; component groups},
language = {eng},
number = {7},
pages = {2163-2199},
publisher = {Association des Annales de l'Institut Fourier},
title = {On component groups of Jacobians of Drinfeld modular curves},
url = {http://eudml.org/doc/116171},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Papikian, Mihran
TI - On component groups of Jacobians of Drinfeld modular curves
JO - Annales de l'Institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 7
SP - 2163
EP - 2199
AB - Let $J_0({\mathfrak {n}})$ be the Jacobian variety of the Drinfeld modular curve $X_0({\mathfrak {n}})$ over ${\mathbb {F}}_q(t)$, where ${\mathfrak {n}}$ is an ideal in ${\mathbb {F}}_q[t]$. Let $0\rightarrow B
\rightarrow J_0({\mathfrak {n}}) \rightarrow A \rightarrow 0$ be an exact sequence of abelian varieties. Assume $B$, as
a subvariety of $J_0({\mathfrak {n}})$ , is stable under the action of the Hecke algebra ${\mathbb {T}} \subset $ End $ (J_0({\mathfrak {n}}))$. We give a criterion which is sufficient for the
exactness of the induced sequence of component groups $0 \rightarrow \Phi _{B, \infty } \rightarrow \Phi _{J, \infty } \rightarrow \Phi _{A, \infty } \rightarrow 0$ of the Néron models of these abelian
varieties over ${\mathbb {F}}_q [\![{1 \over t}]\!]$. This criterion is always satisfied when
either $A$ or $B$ is one-dimensional. Moreover, we prove that the sequence of component
groups is always exact on $\ell $-power torsion for any prime $\ell $ not dividing $(q-1)$.
In particular, the sequence is always exact when $q=2$.
LA - eng
KW - Component groups; Drinfeld modular curves; monodromy pairing; component groups
UR - http://eudml.org/doc/116171
ER -
References
top- S. Bosch, W. Lütkebohmert, Degenerating abelian varieties, Topology 30 (1991), 653-698 Zbl0761.14015MR1133878
- S. Bosch, W. Lütkebohmert, Formal and rigid geometry I, Math. Ann. 295 (1993), 291-317 Zbl0808.14017MR1202394
- S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, (1990), Springer Zbl0705.14001MR1045822
- B. Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier 49 (1999), 473-541 Zbl0928.32011MR1697371
- B. Conrad, W. Stein, Component groups of purely toric quotients, Math. Research Letters 8 (2001), 745-766 Zbl1081.11040MR1879817
- P. Deligne, Formes modulaires et représentations de , 349 (1973), 55-105, Springer Zbl0271.10032
- V. Drinfeld, Elliptic modules, Math. Sbornik 94 (1974), 594-627 Zbl0321.14014MR384707
- M. Emerton, Optimal quotients of modular Jacobians, Math. Ann. 327 (2003), 429-458 Zbl1061.11018MR2021024
- J. Fresnel, M. van der Put, Géométrie analytique rigide et applications, (1981), Birkhäuser Zbl0479.14015MR644799
- E.-U. Gekeler, Automorphe Formen über mit kleinem Führer, Abh. Math. Sem. Univ. Hamburg 55 (1985), 111-146 Zbl0564.10026MR831522
- E.-U. Gekeler, Über Drinfeld'sche Modulkurven vom Hecke-Typ, Comp. Math. 57 (1986), 219-236 Zbl0599.14032MR827352
- E.-U. Gekeler, Analytic construction of Weil curves over function fields, J. Th. nombres Bordeaux 7 (1995), 27-49 Zbl0846.11037MR1413565
- E.-U. Gekeler, Improper Eisenstein series on Bruhat-Tits trees, Manuscripta Math. 86 (1995), 367-391 Zbl0884.11025MR1323798
- E.-U. Gekeler, On the cuspidal divisor group of a Drinfeld modular curve, Doc. Math. J. DMV 2 (1997), 351-374 Zbl0895.11024MR1487469
- E.-U. Gekeler, U. Nonnengardt, Fundamental domains of some arithmetic groups over function fields, Internat. J. Math. 6 (1995), 689-708 Zbl0858.11025MR1351161
- E.-U. Gekeler, M. Reversat, Jacobians of Drinfeld modular curves, J. reine angew. Math. 476 (1996), 27-93 Zbl0848.11029MR1401696
- S. Gelbart, Automorphic forms on adele groups, (1975), Princeton Univ. Press Zbl0329.10018MR379375
- L. Gerritzen, M. van der Put, Schottky groups and Mumford curves, 817 (1980), Springer Zbl0442.14009MR590243
- A. Grothendieck, Groupes de type mulitplicatif: homomorphismes dans un schéma en groupes, SGA 3 exposé IX (1970)
- A. Grothendieck, Modèles de Néron et monodromie, SGA 7 exposé IX (1972) Zbl0248.14006
- A. Grothendieck, J. Dieudonné, Étude cohomologique des faisceaux cohérents : EGA III, Publ. Math. IHÉS 11 (1962) Zbl0118.36206
- B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHÉS 47 (1977), 33-186 Zbl0394.14008MR488287
- D. Mumford, Abelian varieties, (1970), Oxford Univ. Press Zbl0326.14012MR282985
- D. Mumford, An analytic construction of degenerating curves over complete local rings, Comp. Math. 24 (1972), 129-174 Zbl0228.14011MR352105
- M. Reversat, Sur les revêtements de Schottky des courbes modulaires de Drinfeld, Arch. Math. 66 (1996), 378-387 Zbl0853.14014MR1383902
- K. Ribet, Letter to J.-F. Mestre, (1987)
- K. Ribet, On the modular representations of arising from modular forms, Invent. Math. 100 (1990), 431-476 Zbl0773.11039MR1047143
- J-P. Serre, Trees, (1980), Springer Zbl0548.20018MR607504
- W. Stein, The refined Eisenstein conjecture, (1999)
- A. Tamagawa, The Eisenstein quotient of the Jacobian variety of a Drinfeld modular curve, Publ. RIMS, Kyoto Univ. 31 (1995), 204-246 Zbl1045.11510MR1329480
- M. van der Put, A note on -adic uniformization, Proc. Nederl. Akad. Wetensch. 90 (1987), 313-318 Zbl0624.32018MR914089
- M. van der Put, Discrete groups, Mumford curves and theta functions, Ann. Fac. Sci. Toulouse 1 (1992), 399-438 Zbl0789.14020MR1225666
- D. Zagier, Modular parametrizations of elliptic curves, Canad. Math. Bull. 28 (1985), 372-384 Zbl0579.14027MR790959
- L. Illusie, Réalisation -adique de l’accouplement de monodromie d’après A. Grothendieck, Astérisque 196-197 (1991), 27-44 Zbl0781.14011MR1141455
- A. Grothendieck, J. Dieudonné, Étude cohomologique des faisceaux cohérents : EGA III, Publ. Math., Inst. Hautes Étud. Sci. 17 (1963) Zbl0122.16102MR163911
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.