A motivic Chebotarev density theorem. Dhillon, Ajneet; Mináč, Ján — 2006 The New York Journal of Mathematics [electronic only]
When is Galois cohomology free or trivial? Lemire, Nicole; Mináč, Ján; Swallow, John — 2005 The New York Journal of Mathematics [electronic only]
Galois module structure of Milnor K -theory mod p s in characteristic p . Mináč, Ján; Schultz, Andrew; Swallow, John — 2008 The New York Journal of Mathematics [electronic only]
The distributivity property of finite intersections of valuation rings Ján Mináč — 1984 Mathematica Slovaca
Additive structure of multiplicative subgroups of fields and Galois theory. Mahé, Louis; Mináč, Ján; Smith, Tara L. — 2004 Documenta Mathematica
Galois module structure of Milnor K -theory in characteristic p . Bhandari, Ganesh; Lemire, Nicole; Mináč, Ján; Swallow, John — 2008 The New York Journal of Mathematics [electronic only]
Formally real fields, pythagorean fields, C-fields and W-groups. Ján Minác; Michel Spira — 1990 Mathematische Zeitschrift
Demuskin Groups of Rank N0 as absolute Galois Groups. Roger Ware; Ján Minác — 1991 Manuscripta mathematica
Pro-2-Demuskin groups of rank ...0 as Galois groups of maximal 2-extensions of fields. Roger Ware; Ján Minác — 1992 Mathematische Annalen
Automatic realizations of Galois groups with cyclic quotient of order p n Ján Mináč; Andrew Schultz; John Swallow — 2008 Journal de Théorie des Nombres de Bordeaux We establish automatic realizations of Galois groups among groups M ⋊ G , where G is a cyclic group of order p n for a prime p and M is a quotient of the group ring 𝔽 p [ G ] .