A unilateral boundary-value condition at the left end of a simply supported rod is considered. Variational and (equivalent) classical formulations are introduced and all solutions to the classical problem are calculated in an explicit form. Formulas for the energies corresponding to the solutions are also given. The problem is solved and energies of the solutions are compared in the pertubed as well as the unperturbed cases.
Bifurcation and eigenvalue theorems are proved for a certain type of quasivariational inequalities using the method of a jump in the Leray-Schauder degree.
In this paper linear difference equations with several independent variables are considered, whose solutions are functions defined on sets of -dimensional vectors with integer coordinates. These equations could be called partial difference equations. Existence and uniqueness theorems for these equations are formulated and proved, and interconnections of such results with the theory of linear multidimensional digital systems are investigated.
Numerous examples show essential differences of the results...
Download Results (CSV)