The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give a necessary condition for a torus knot to be untied by a single twisting. By using this result, we give infinitely many torus knots that cannot be untied by a single twisting.
Let be a knot in the -sphere , and a disk in meeting transversely in the interior. For non-triviality we assume that over all isotopies of in . Let () be a knot obtained from by twistings along the disk . If the original knot is unknotted in , we call a . We describe for which pair and an integer , the twisted knot is a torus knot, a satellite knot or a hyperbolic knot.
Download Results (CSV)