Géométrie du spectre dans une algèbre de Banach et domaine numérique
Dans une algèbre de Banach et dans deux cas particuliers, nous montrons la continuité du centre du plus petit disque contenant le spectre. Pour a ∈ , on donne une condition nécessaire et suffisante pour avoir où d(a) est la distance de a aux scalaires et le rayon du plus petit disque contenant K qui représente le spectre ou le domaine numérique algébrique de a. Dans un espace de Hilbert complexe, K peut représenter certains types de spectres ou de domaines numériques de a.