Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods
This paper presents a numerical approach to solve the Hamilton-Jacobi-Bellman (HJB) problem which appears in feedback solution of the optimal control problems. In this method, first, by using Chebyshev pseudospectral spatial discretization, the HJB problem is converted to a system of ordinary differential equations with terminal conditions. Second, the time-marching Runge-Kutta method is used to solve the corresponding system of differential equations. Then, an approximate solution for the HJB problem...