The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a commutative ring. The annihilator graph of , denoted by , is the undirected graph with all nonzero zero-divisors of as vertex set, and two distinct vertices and are adjacent if and only if , where for , . In this paper, we characterize all finite commutative rings with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings whose annihilator graphs have clique number , or . Also, we investigate some properties of the annihilator...
Download Results (CSV)