The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Nonexistence results for the Cauchy problem of some systems of hyperbolic equations

Mokhtar KiraneSalim Messaoudi — 2002

Annales Polonici Mathematici

We consider the systems of hyperbolic equations ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | v | p , t > 0, x N , (S1) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | u | q , t > 0, x N u = Δ ( a ( t , x ) u ) + h ( t , x ) | v | p , t > 0, x N , (S2) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + l ( t , x ) | v | m + k ( t , x ) | u | q , t > 0, x N , (S3) ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | u | p , t > 0, x N , ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | v | q , t > 0, x N , in ( 0 , ) × N with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.

Blow up for a completely coupled Fujita type reaction-diffusion system

Noureddine IgbidaMokhtar Kirane — 2002

Colloquium Mathematicae

This paper provides blow up results of Fujita type for a reaction-diffusion system of 3 equations in the form u - Δ ( a 11 u ) = h ( t , x ) | v | p , v - Δ ( a 21 u ) - Δ ( a 22 v ) = k ( t , x ) | w | q , w - Δ ( a 31 u ) - Δ ( a 32 v ) - Δ ( a 33 w ) = l ( t , x ) | u | r , for x N , t > 0, p > 0, q > 0, r > 0, a i j = a i j ( t , x , u , v ) , under initial conditions u(0,x) = u₀(x), v(0,x) = v₀(x), w(0,x) = w₀(x) for x N , where u₀, v₀, w₀ are nonnegative, continuous and bounded functions. Subject to conditions on dependence on the parameters p, q, r, N and the growth of the functions h, k, l at infinity, we prove finite blow up time for every solution of the above system,...

On the asymptotic behavior for convection-diffusion equations associated to higher order elliptic operators in divergence form.

Mokhtar KiraneMahmoud Qafsaoui — 2002

Revista Matemática Complutense

We consider the linear convection-diffusion equation associated to higher order elliptic operators ⎧  ut + Ltu = a∇u   on Rnx(0,∞) ⎩  u(0) = u0 ∈ L1(Rn), where a is a constant vector in Rn, m ∈ N*, n ≥ 1 and L0 belongs to a class of higher order elliptic operators in divergence form associated to non-smooth...

Page 1

Download Results (CSV)