On a set of asymptotic densities Pavel Jahoda; Monika Jahodová — 2008 Acta Mathematica Universitatis Ostraviensis Let ℙ = { p 1 , p 2 , ⋯ , p i , ⋯ } be the set of prime numbers (or more generally a set of pairwise co-prime elements). Let us denote A p a , b = { p a n + b m ∣ n ∈ ℕ ∪ { 0 } ; m ∈ ℕ , p does not divide m } , where a ∈ ℕ , b ∈ ℕ ∪ { 0 } . Then for arbitrary finite set B , B ⊂ ℙ holds d ⋂ p i ∈ B A p i a i , b i = ∏ p i ∈ B d A p i a i , b i , and d A p i a i , b i = 1 p i b i 1 - 1 p i 1 - 1 p i a i . If we denote A = 1 p b 1 - 1 p 1 - 1 p a ∣ p ∈ ℙ , a ∈ ℕ , b ∈ ℕ ∪ { 0 } , where ℙ is the set of all prime numbers, then for closure of set A holds cl A = A ∪ B ∪ { 0 , 1 } , where B = 1 p b 1 - 1 p ∣ p ∈ ℙ , b ∈ ℕ ∪ { 0 } .