The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Going down in (semi)lattices of finite Moore families and convex geometries

Bordalo GabrielaCaspard NathalieMonjardet Bernard — 2009

Czechoslovak Mathematical Journal

In this paper we first study what changes occur in the posets of irreducible elements when one goes from an arbitrary Moore family (respectively, a convex geometry) to one of its lower covers in the lattice of all Moore families (respectively, in the semilattice of all convex geometries) defined on a finite set. Then we study the set of all convex geometries which have the same poset of join-irreducible elements. We show that this set—ordered by set inclusion—is a ranked join-semilattice and we...

Sur diverses formes de la «règle de Condorcet» d'agrégation des préférences

Bernard Monjardet — 1990

Mathématiques et Sciences Humaines

Nous appelons ici règle ou procédure de Condorcet la procédure d'agrégation d'ordres des préférences individuelles en un ordre collectif consistant à chercher un ordre recueillant le nombre maximum de suffrages sur toutes les préférences par paires qu'il exprime. La définition précise de cette procédure et la raison de son appellation se trouvent dans l'introduction. Le reste du texte présente de multiples formes équivalentes pour la définir et donne des indications historiques et bibliographiques...

Finite orders and their minimal strict completion lattices

Gabriela Hauser BordaloBernard Monjardet — 2003

Discussiones Mathematicae - General Algebra and Applications

Whereas the Dedekind-MacNeille completion D(P) of a poset P is the minimal lattice L such that every element of L is a join of elements of P, the minimal strict completion D(P)∗ is the minimal lattice L such that the poset of join-irreducible elements of L is isomorphic to P. (These two completions are the same if every element of P is join-irreducible). In this paper we study lattices which are minimal strict completions of finite orders. Such lattices are in one-to-one correspondence with finite...

Page 1

Download Results (CSV)