Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Dihedral-like constructions of automorphic loops

Mouna Aboras — 2014

Commentationes Mathematicae Universitatis Carolinae

Automorphic loops are loops in which all inner mappings are automorphisms. We study a generalization of the dihedral construction for groups. Namely, if ( G , + ) is an abelian group, m 1 and α Aut ( G ) , let Dih ( m , G , α ) be defined on m × G by ( i , u ) ( j , v ) = ( i j , ( ( - 1 ) j u + v ) α i j ) . The resulting loop is automorphic if and only if m = 2 or ( α 2 = 1 and m is even). The case m = 2 was introduced by Kinyon, Kunen, Phillips, and Vojtěchovský. We present several structural results about the automorphic dihedral loops in both cases.

Page 1

Download Results (CSV)