We continue an investigation into centered spaces, a generalization of dyadic spaces. The presence of large Cantor cubes in centered spaces is deduced from tightness considerations. It follows that for centered spaces X, πχ(X) = t(X), and if X has uncountable tightness, then t(X) = supκ : ⊂ X. The relationships between 9 popular cardinal functions for the class of centered spaces are justified. An example is constructed which shows, unlike the dyadic and polyadic properties, that the centered...
A scadic space is a Hausdorff continuous image of a product of compact scattered spaces. We complete a theorem begun by G. Chertanov that will establish that for each scadic space X, χ(X) = w(X). A ξ-adic space is a Hausdorff continuous image of a product of compact ordinal spaces. We introduce an either-or chain condition called Property which we show is satisfied by all ξ-adic spaces. Whereas Property is productive, we show that a weaker (but more natural) Property is not productive. Polyadic...
A polyadic space is a Hausdorff continuous image of some power of the one-point compactification of a discrete space. We prove a Ramsey-like property for polyadic spaces which for Boolean spaces can be stated as follows: every uncountable clopen collection contains an uncountable subcollection which is either linked or disjoint. One corollary is that is not a universal preimage for uniform Eberlein compact spaces of weight at most κ, thus answering a question of Y. Benyamini, M. Rudin and M. Wage....
We answer a question of I. Juhasz by showing that MA CH does not imply that every compact ccc space of countable -character is separable. The space constructed has the additional property that it does not map continuously onto .
We apply the general theory of -Corson Compact spaces to remove an unnecessary hypothesis of zero-dimensionality from a theorem on polyadic spaces of tightness . In particular, we prove that polyadic spaces of countable tightness are Uniform Eberlein compact spaces.
Download Results (CSV)