The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Gromov and Dranishnikov introduced asymptotic and coarse dimensions of proper metric spaces via quite different ways. We define coarse and asymptotic dimension of all metric spaces in a unified manner and we investigate relationships between them generalizing results of Dranishnikov and Dranishnikov-Keesling-Uspienskij.
The main results of the paper are:
Proposition 0.1. A group G acting coarsely on a coarse space (X,𝓒) induces a coarse equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X.
Theorem 0.2. Two coarse structures 𝓒₁ and 𝓒₂ on the same set X are equivalent if the following conditions are satisfied:
(1) Bounded sets in 𝓒₁ are identical with bounded sets in 𝓒₂.
(2) There is a coarse action ϕ₁ of a group G₁ on (X,𝓒₁) and a coarse action ϕ₂ of a...
We prove that there exists a continuous regular, positive homogeneous extension operator for the family of all uniformly continuous bounded real-valued functions whose domains are closed subsets of a bounded metric space (X,d). In particular, this operator preserves Lipschitz functions. A similar result is obtained for partial metrics and ultrametrics.
We define Peano covering maps and prove basic properties analogous to classical covers. Their domain is always locally path-connected but the range may be an arbitrary topological space. One of characterizations of Peano covering maps is via the uniqueness of homotopy lifting property for all locally path-connected spaces.
Regular Peano covering maps over path-connected spaces are shown to be identical with generalized regular covering maps introduced by Fischer and Zastrow....
Download Results (CSV)