The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a uniformly bounded collection of compact convex sets in ℝ ⁿ. Katchalski extended Helly’s theorem by proving for finite ℱ that dim (⋂ ℱ) ≥ d, 0 ≤ d ≤ n, if and only if the intersection of any f(n,d) elements has dimension at least d where f(n,0) = n+1 = f(n,n) and f(n,d) = maxn+1,2n-2d+2 for 1 ≤ d ≤ n-1. An equivalent statement of Katchalski’s result for finite ℱ is that there exists δ > 0 such that the intersection of any f(n,d) elements of ℱ contains a d-dimensional ball of measure...
Download Results (CSV)