The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A ring extension is said to be strongly affine if each -subalgebra of is a finite-type -algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if is a quasi-local ring of finite dimension, then is integrally closed and strongly affine if and only if is a Prüfer extension (i.e. is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let be...
Download Results (CSV)