A posteriori error estimates for a nonconforming finite element discretization of the heat equation
The paper presents an a posteriori error estimator for a (piecewise linear) nonconforming finite element approximation of the heat equation in , or 3, using backward Euler’s scheme. For this discretization, we derive a residual indicator, which use a spatial residual indicator based on the jumps of normal and tangential derivatives of the nonconforming approximation and a time residual indicator based on the jump of broken gradients at each time step. Lower and upper bounds form the main results...