A posteriori error estimates for a nonconforming finite element discretization of the heat equation
Serge Nicaise[1]; Nadir Soualem
- [1] Université de Valenciennes et du Hainaut Cambrésis, MACS, Le Mont Houy, 59313 Valenciennes Cedex 9, France. http://www.univ-valenciennes.fr/macs/Serge.Nicaise
- Volume: 39, Issue: 2, page 319-348
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori error analysis of finite volume discretizations of Darcy’s equations. Numer. Math. 96 (2003) 17–42. Zbl1050.76035
- [2] G. Acosta and R.G. Durán, The maximum angle condition for mixed and non-conforming elements, Application to the Stokes equations. SIAM J. Numer. Anal. 37 (1999) 18–36. Zbl0948.65115
- [3] T. Apel, Anisotropic finite elements: Local estimates and applications. Adv. Numer. Math. Teubner, Stuttgart (1999). Zbl0934.65121MR1716824
- [4] T. Apel and S. Nicaise, The inf-sup condition for some low order elements on anisotropic meshes. Calcolo 41 (2004) 89–113. Zbl1108.65117
- [5] T. Apel, S. Nicaise and J. Schröberl, A non-conforming finite element method with anisotropic mesh grading for the stokes problem in domains with edges. IMA J. Numer. Anal. 21 (2001) 843–856. Zbl0998.65116
- [6] A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic problem. Preprint Laboratoire J.-L. Lions 01045, Université Paris 6 (2001). Zbl1072.65124
- [7] A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of a nonlinear parabolic equation. (2004) (to appear). Zbl1072.65124
- [8] C. Bernardi and B. Métivet, Indicateurs d’erreur pour l’équation de la chaleur. Rev. Européenne Élém. Finis 9 (2000) 425–438. Zbl0959.65106
- [9] C. Bernardi and R. Verfürth, A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: M2AN 38 (2004) 437–455. Zbl1079.76042
- [10] P. Brenner, M. Crouzeix and V. Thomée, Single step methods for inhomogeneous linear differential equations in banach space. RAIRO Anal. Numér. 16 (1982) 5–26. Zbl0477.65040
- [11] P. Ciarlet, The finite element method for elliptic problems. North Holland (1996). Zbl0383.65058MR520174
- [12] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 2 (1975) 77–84. Zbl0368.65008
- [13] E. Creusé, G. Kunert and S. Nicaise, A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations. Math. Models Methods Appl. Sci. 14 (2004) 1297–1341. Zbl1071.65142
- [14] E. Dari, R. Durán, C. Padra and V. Vampa, A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 385–400. Zbl0853.65110
- [15] V. Girault and P.-A. Raviart, Finite elements methods for Navier-Stokes equations, Theory and Algorithms. Springer Series in Computational Mathematics, Berlin (1986). Zbl0585.65077
- [16] C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277–291. Zbl0701.65063
- [17] M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237. Zbl0935.65105
- [18] M. Picasso, An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24 (2003) 1328–1355. Zbl1061.65116
- [19] L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. Zbl0696.65007
- [20] R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996). Zbl0853.65108
- [21] R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. Zbl0938.65125
- [22] R. Verfürth, A posteriori error estimates for finite element discretization of the heat equation. Calcolo 40 (2003) 195–212. Zbl1168.65418