The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A subset E of ℝⁿ is called self-affine with respect to a collection ϕ₁,...,ϕₜ of affinities if E is the union of the sets ϕ₁(E),...,ϕₜ(E). For S ⊂ ℝⁿ let . If Φ(S) ⊂ S let denote . For given Φ consisting of contracting “pseudo-dilations” (affinities which preserve the directions of the coordinate axes) and subject to further mild technical restrictions we show that there exist self-affine sets of each Hausdorff dimension between zero and a positive number depending on Φ. We also investigate...
Download Results (CSV)