The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Factorization of operators on C*-algebras

Narcisse Randrianantoanina — 1998

Studia Mathematica

Let A be a C*-algebra. We prove that every absolutely summing operator from A into 2 factors through a Hilbert space operator that belongs to the 4-Schatten-von Neumann class. We also provide finite-dimensional examples that show that one cannot replace the 4-Schatten-von Neumann class by the p-Schatten-von Neumann class for any p < 4. As an application, we show that there exists a modulus of capacity ε → N(ε) so that if A is a C*-algebra and T Π 1 ( A , 2 ) with π 1 ( T ) 1 , then for every ε >0, the ε-capacity of...

Spectral subspaces and non-commutative Hilbert transforms

Narcisse Randrianantoanina — 2002

Colloquium Mathematicae

Let G be a locally compact abelian group and ℳ be a semifinite von Neumann algebra with a faithful semifinite normal trace τ. We study Hilbert transforms associated with G-flows on ℳ and closed semigroups Σ of Ĝ satisfying the condition Σ ∪ (-Σ) = Ĝ. We prove that Hilbert transforms on such closed semigroups satisfy a weak-type estimate and can be extended as linear maps from L¹(ℳ,τ) into L 1 , ( , τ ) . As an application, we obtain a Matsaev-type result for p = 1: if x is a quasi-nilpotent compact operator...

Non-commutative martingale VMO-spaces

Narcisse Randrianantoanina — 2009

Studia Mathematica

We study Banach space properties of non-commutative martingale VMO-spaces associated with general von Neumann algebras. More precisely, we obtain a version of the classical Kadets-Pełczyński dichotomy theorem for subspaces of non-commutative martingale VMO-spaces. As application we prove that if ℳ is hyperfinite then the non-commutative martingale VMO-space associated with a filtration of finite-dimensional von Neumannn subalgebras of ℳ has property (u).

Noncommutative fractional integrals

Narcisse RandrianantoaninaLian Wu — 2015

Studia Mathematica

Let ℳ be a hyperfinite finite von Nemann algebra and ( k ) k 1 be an increasing filtration of finite-dimensional von Neumann subalgebras of ℳ. We investigate abstract fractional integrals associated to the filtration ( k ) k 1 . For a finite noncommutative martingale x = ( x k ) 1 k n L ( ) adapted to ( k ) k 1 and 0 < α < 1, the fractional integral of x of order α is defined by setting I α x = k = 1 n ζ k α d x k for an appropriate sequence ( ζ k ) k 1 of scalars. For the case of a noncommutative dyadic martingale in L₁() where is the type II₁ hyperfinite factor equipped...

Page 1

Download Results (CSV)