The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Our aim is to estimate the joint distribution of a finite sequence of independent categorical variables. We consider the collection of partitions into dyadic intervals and the associated histograms, and we select from the data the best histogram by minimizing a penalized least-squares criterion. The choice of the collection of partitions is inspired from approximation results due to DeVore and Yu. Our estimator satisfies a nonasymptotic oracle-type inequality and adaptivity properties in the minimax...
Our aim is to estimate the joint distribution of a finite sequence of independent categorical variables. We consider the collection of partitions into dyadic intervals and the associated histograms, and we select from the data the best histogram by minimizing a penalized least-squares criterion. The choice of the collection of partitions is inspired from approximation results due to DeVore and Yu. Our estimator satisfies a nonasymptotic oracle-type inequality and adaptivity properties in the minimax...
Download Results (CSV)