Estimating a discrete distribution via histogram selection
ESAIM: Probability and Statistics (2011)
- Volume: 15, page 1-29
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Aerts and N. Veraverbeke, Bootstrapping a nonparametric polytomous regression model. Math. Meth. Statist.4 (1995) 189–200. Zbl0832.62031
- Y. Baraud and L. Birgé, Estimating the intensity of a random measure by histogram type estimators. Prob. Theory Relat. Fields143 (2009) 239–284. Zbl1149.62019
- A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Prob. Theory Relat. Fields113 (1999) 301–413. Zbl0946.62036
- C. Bennett and R. Sharpley, Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc., Boston, M.A. (1988). Zbl0647.46057
- L. Birgé, Model selection via testing: an alternative to (penalized) maximum likelihood estimators. Ann. Inst. H. Poincaré Probab. Statist.42 (2006) 273–325. Zbl1333.62094
- L. Birgé, Model selection for Poisson processes, in Asymptotics: Particles, Processes and Inverse Problems, Festschrift for Piet Groeneboom. IMS Lect. Notes Monograph Ser.55. IMS, Beachwood, USA (2007) 32–64. Zbl1176.62082
- L. Birgé and P. Massart, Minimal penalties for Gaussian model selection. Prob. Theory Relat. Fields138 (2007) 33–73. Zbl1112.62082
- J.V. Braun and H.-G. Müller, Statistical methods for DNA sequence segmentation. Stat. Sci.13 (1998) 142–162. Zbl0960.62121
- J.V. Braun, R.K. Braun and H.-G. Müller, Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation. Biometrika87 (2000) 301–314. Zbl0963.62067
- T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to algorithms. Second edition. MIT Press, Cambridge, MA (2001). Zbl1047.68161
- M. Csűrös, Algorithms for finding maximum-scoring segment sets, in Proc. of the 4th international workshop on algorithms in bioinformatics 2004. Lect. Notes Comput. Sci.3240. Springer, Berlin, Heidelberg (2004) 62–73.
- R.A. DeVore and G.G. Lorentz, Constructive approximation. Springer-Verlag, Berlin, Heidelberg (1993). Zbl0797.41016
- R.A. DeVore and R.C. Sharpley, Maximal functions measuring smoothness. Mem. Amer. Math. Soc.47 (1984) 293. Zbl0529.42005
- R.A. DeVore and X.M. Yu, Degree of adaptive approximation. Math. Comp.55 (1990) 625–635. Zbl0723.41015
- C. Durot, E. Lebarbier and A.-S. Tocquet, Estimating the joint distribution of independent categorical variables via model selection. Bernoulli15 (2009) 475–507. Zbl1200.62024
- Y.-X. Fu and R.N. Curnow, Maximum likelihood estimation of multiple change points. Biometrika77 (1990) 562–565. Zbl0724.62025
- S. Gey S. and E. Lebarbier, Using CART to detect multiple change-points in the mean for large samples. SSB preprint, Research report No. 12 (2008).
- M. Hoebeke, P. Nicolas and P. Bessières, MuGeN: simultaneous exploration of multiple genomes and computer analysis results. Bioinformatics19 (2003) 859–864.
- E. Lebarbier, Quelques approches pour la détection de ruptures à horizon fini. Ph.D. thesis, Université Paris Sud, Orsay, 2002.
- E. Lebarbier and E. Nédélec, Change-points detection for discrete sequences via model selection. SSB preprint, Research Report No. 9 (2007).
- P. Massart, Concentration inequalities and model selection. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003. Lect. Notes Math.1896. Springer, Berlin, Heidelberg (2007).
- P. Nicolaset al., Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res.30 (2002) 1418–1426.
- W. Szpankowski, L. Szpankowski and W. Ren, An optimal DNA segmentation based on the MDL principle. Int. J. Bioinformatics Res. Appl.1 (2005) 3–17.