The geometry of autonomous metrical multi-time Lagrange space of electrodynamics.
The aim of this paper is to construct a canonical nonlinear connection on the 1-jet space from the Euler-Lagrange equations of the quadratic multi-time Lagrangian function
In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.
Page 1