Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics

Alexandru Oană; Mircea Neagu

Communications in Mathematics (2012)

  • Volume: 20, Issue: 2, page 137-145
  • ISSN: 1804-1388

Abstract

top
In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.

How to cite

top

Oană, Alexandru, and Neagu, Mircea. "Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics." Communications in Mathematics 20.2 (2012): 137-145. <http://eudml.org/doc/251369>.

@article{Oană2012,
abstract = {In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.},
author = {Oană, Alexandru, Neagu, Mircea},
journal = {Communications in Mathematics},
keywords = {jet polymomentum Hamiltonian of electrodynamics; Cartan canonical connection; Maxwell-like and Einstein-like equations; jet polymomentum Hamiltonian of electrodynamics; Cartan canonical connection; Maxwell-like and Einstein-like equations},
language = {eng},
number = {2},
pages = {137-145},
publisher = {University of Ostrava},
title = {Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics},
url = {http://eudml.org/doc/251369},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Oană, Alexandru
AU - Neagu, Mircea
TI - Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics
JO - Communications in Mathematics
PY - 2012
PB - University of Ostrava
VL - 20
IS - 2
SP - 137
EP - 145
AB - In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.
LA - eng
KW - jet polymomentum Hamiltonian of electrodynamics; Cartan canonical connection; Maxwell-like and Einstein-like equations; jet polymomentum Hamiltonian of electrodynamics; Cartan canonical connection; Maxwell-like and Einstein-like equations
UR - http://eudml.org/doc/251369
ER -

References

top
  1. Asanov, G. S., 10.1002/prop.2190380802, Fortschr. Phys., 38, 8, 1990, 571-610, (1990) Zbl0744.53035MR1076500DOI10.1002/prop.2190380802
  2. Atanasiu, Gh., Neagu, M., Canonical nonlinear connections in the multi-time Hamilton geometry, Balkan J. Geom. Appl., 14, 2, 2009, 1-12, (2009) Zbl1186.53038MR2539737
  3. Christodoulou, D., Francaviglia, M., Tulczyjew, W. M., 10.1007/BF00757208, J. Gen. Relativ. Gravit., 10, 1979, 567-579, (1979) Zbl0448.58006MR0541653DOI10.1007/BF00757208
  4. Chruściński, D., 10.1016/S0034-4877(98)80181-X, Rep. Math. Phys., 41, 1, 1998, 13-48, (1998) Zbl0932.70016MR1617898DOI10.1016/S0034-4877(98)80181-X
  5. Coriasco, S., Ferraris, M., Francaviglia, M., Non linear relativistic electrodynamics, Geometria, Fisica-Matematica e outros Ensaios -- volume in honour of A. Ribeiro Gomes, 1998, 101-118, Coimbra, (1998) 
  6. Dickey, L. A., Solitons Equations and Hamiltonian systems, 1991, Advanced Series in Mathematical Physics 12, World Scientific, Singapore, Chapter 17: Multi-Time Lagrangian and Hamiltonian Formalism.. (1991) MR1147643
  7. Eells, J., Lemaire, L., 10.1112/blms/10.1.1, Bull. London Math. Soc., 10, 1978, 1-68, (1978) Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
  8. Francaviglia, M., Palese, M., Winterroth, E., A new geometric proposal for the Hamiltonian description of classical field theories, Proc. of the 8th Int. Conf. ``DGA 2001 -- Differential Geometry and Its Applications", 2002, 415-423, Silesian University, (2002) MR1978795
  9. Giachetta, G., Mangiarotti, L., Sardanashvily, G., Covariant Hamiltonian field theory, 1999, arXiv:hep-th/9904062v1. (1999) 
  10. Gotay, M., Isenberg, J., Marsden, J. E., Montgomery, R., Momentum maps and classical fields. Part I. Covariant field theory, 2004, arXiv:physics/9801019v2 [math-ph]. (2004) MR1188431
  11. Kanatchikov, I. V., 10.1063/1.57105, AIP Conf. Proc., 453, 1, 1998, 356-367, (1998) Zbl0982.81028MR1765516DOI10.1063/1.57105
  12. Krupková, O., 10.1016/S0393-0440(01)00087-0, J. Geom. Phys., 43, 2002, 93-132, (2002) Zbl1016.37033MR1919207DOI10.1016/S0393-0440(01)00087-0
  13. Krupková, O., Hamiltonian field theory revisited: A geometric approach to regularity, Proc. Colloq. Diff. Geom. ``Steps in Differential Geometry", 2001, 187-207, Debrecen University, (2001) Zbl0980.35009MR1859298
  14. Krupková, O., Saunders, D. J., 10.1142/S0219887811005336, Int. J. Geom. Methods Mod. Phys., 8, 3, 2011, 669-697, (2011) MR2807123DOI10.1142/S0219887811005336
  15. Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces: Theory and Applications, 1994, Kluwer Academic Publishers, Dordrecht, (1994) Zbl0831.53001MR1281613
  16. Miron, R., Hrimiuc, D., Shimada, H., Sabău, S. V., The Geometry of Hamilton and Lagrange Spaces, Kluwer Academic Publishers, Dordrecht, 2001, (2001) Zbl1001.53053MR1839409
  17. Neagu, M., Riemann-Lagrange Geometry on 1-Jet Spaces, 2005, Matrix Rom, Bucharest, (2005) 
  18. Neagu, M., 10.1155/S0161171202011018, Int. J. Math. Math. Sci., 29, 1, 2002, 7-16, (2002) Zbl1011.53053MR1892327DOI10.1155/S0161171202011018
  19. Neagu, M., Udrişte, C., Oană, A., Multi-time dependent sprays and h -traceless maps, Balkan J. Geom. Appl., 10, 2, 2005, 76-92, (2005) MR2235108
  20. Oană, A., Neagu, M., The local description of the Ricci and Bianchi identities for an h -normal N -linear connection on the dual 1-jet space J 1 * ( T , M ) , 2011, arXiv:1111.4173v1 [math.DG].. (2011) MR3032809
  21. Oană, A., Neagu, M., From quadratic Hamiltonians of polymomenta to abstract geometrical Maxwell-like and Einstein-like equations, 2012, arXiv:1202.4477v1 [math-ph]. (2012) MR3035882
  22. Sachs, R. K., Wu, H., General Relativity for Mathematicians, 1977, Springer-Verlag, New York, Heidelberg, Berlin, (1977) Zbl0373.53001MR0503498
  23. Saunders, D. J., The Geometry of Jet Bundles, 1989, Cambridge University Press, New York, London, (1989) Zbl0665.58002
  24. Udrişte, C., Matei, L., Lagrange-Hamilton Theories (in Romanian), 2008, Geometry Balkan Press, Bucharest, (2008) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.