Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics
Communications in Mathematics (2012)
- Volume: 20, Issue: 2, page 137-145
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topOană, Alexandru, and Neagu, Mircea. "Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics." Communications in Mathematics 20.2 (2012): 137-145. <http://eudml.org/doc/251369>.
@article{Oană2012,
abstract = {In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.},
author = {Oană, Alexandru, Neagu, Mircea},
journal = {Communications in Mathematics},
keywords = {jet polymomentum Hamiltonian of electrodynamics; Cartan canonical connection; Maxwell-like and Einstein-like equations; jet polymomentum Hamiltonian of electrodynamics; Cartan canonical connection; Maxwell-like and Einstein-like equations},
language = {eng},
number = {2},
pages = {137-145},
publisher = {University of Ostrava},
title = {Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics},
url = {http://eudml.org/doc/251369},
volume = {20},
year = {2012},
}
TY - JOUR
AU - Oană, Alexandru
AU - Neagu, Mircea
TI - Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics
JO - Communications in Mathematics
PY - 2012
PB - University of Ostrava
VL - 20
IS - 2
SP - 137
EP - 145
AB - In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.
LA - eng
KW - jet polymomentum Hamiltonian of electrodynamics; Cartan canonical connection; Maxwell-like and Einstein-like equations; jet polymomentum Hamiltonian of electrodynamics; Cartan canonical connection; Maxwell-like and Einstein-like equations
UR - http://eudml.org/doc/251369
ER -
References
top- Asanov, G. S., 10.1002/prop.2190380802, Fortschr. Phys., 38, 8, 1990, 571-610, (1990) Zbl0744.53035MR1076500DOI10.1002/prop.2190380802
- Atanasiu, Gh., Neagu, M., Canonical nonlinear connections in the multi-time Hamilton geometry, Balkan J. Geom. Appl., 14, 2, 2009, 1-12, (2009) Zbl1186.53038MR2539737
- Christodoulou, D., Francaviglia, M., Tulczyjew, W. M., 10.1007/BF00757208, J. Gen. Relativ. Gravit., 10, 1979, 567-579, (1979) Zbl0448.58006MR0541653DOI10.1007/BF00757208
- Chruściński, D., 10.1016/S0034-4877(98)80181-X, Rep. Math. Phys., 41, 1, 1998, 13-48, (1998) Zbl0932.70016MR1617898DOI10.1016/S0034-4877(98)80181-X
- Coriasco, S., Ferraris, M., Francaviglia, M., Non linear relativistic electrodynamics, Geometria, Fisica-Matematica e outros Ensaios -- volume in honour of A. Ribeiro Gomes, 1998, 101-118, Coimbra, (1998)
- Dickey, L. A., Solitons Equations and Hamiltonian systems, 1991, Advanced Series in Mathematical Physics 12, World Scientific, Singapore, Chapter 17: Multi-Time Lagrangian and Hamiltonian Formalism.. (1991) MR1147643
- Eells, J., Lemaire, L., 10.1112/blms/10.1.1, Bull. London Math. Soc., 10, 1978, 1-68, (1978) Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
- Francaviglia, M., Palese, M., Winterroth, E., A new geometric proposal for the Hamiltonian description of classical field theories, Proc. of the 8th Int. Conf. ``DGA 2001 -- Differential Geometry and Its Applications", 2002, 415-423, Silesian University, (2002) MR1978795
- Giachetta, G., Mangiarotti, L., Sardanashvily, G., Covariant Hamiltonian field theory, 1999, arXiv:hep-th/9904062v1. (1999)
- Gotay, M., Isenberg, J., Marsden, J. E., Montgomery, R., Momentum maps and classical fields. Part I. Covariant field theory, 2004, arXiv:physics/9801019v2 [math-ph]. (2004) MR1188431
- Kanatchikov, I. V., 10.1063/1.57105, AIP Conf. Proc., 453, 1, 1998, 356-367, (1998) Zbl0982.81028MR1765516DOI10.1063/1.57105
- Krupková, O., 10.1016/S0393-0440(01)00087-0, J. Geom. Phys., 43, 2002, 93-132, (2002) Zbl1016.37033MR1919207DOI10.1016/S0393-0440(01)00087-0
- Krupková, O., Hamiltonian field theory revisited: A geometric approach to regularity, Proc. Colloq. Diff. Geom. ``Steps in Differential Geometry", 2001, 187-207, Debrecen University, (2001) Zbl0980.35009MR1859298
- Krupková, O., Saunders, D. J., 10.1142/S0219887811005336, Int. J. Geom. Methods Mod. Phys., 8, 3, 2011, 669-697, (2011) MR2807123DOI10.1142/S0219887811005336
- Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces: Theory and Applications, 1994, Kluwer Academic Publishers, Dordrecht, (1994) Zbl0831.53001MR1281613
- Miron, R., Hrimiuc, D., Shimada, H., Sabău, S. V., The Geometry of Hamilton and Lagrange Spaces, Kluwer Academic Publishers, Dordrecht, 2001, (2001) Zbl1001.53053MR1839409
- Neagu, M., Riemann-Lagrange Geometry on 1-Jet Spaces, 2005, Matrix Rom, Bucharest, (2005)
- Neagu, M., 10.1155/S0161171202011018, Int. J. Math. Math. Sci., 29, 1, 2002, 7-16, (2002) Zbl1011.53053MR1892327DOI10.1155/S0161171202011018
- Neagu, M., Udrişte, C., Oană, A., Multi-time dependent sprays and -traceless maps, Balkan J. Geom. Appl., 10, 2, 2005, 76-92, (2005) MR2235108
- Oană, A., Neagu, M., The local description of the Ricci and Bianchi identities for an -normal -linear connection on the dual 1-jet space , 2011, arXiv:1111.4173v1 [math.DG].. (2011) MR3032809
- Oană, A., Neagu, M., From quadratic Hamiltonians of polymomenta to abstract geometrical Maxwell-like and Einstein-like equations, 2012, arXiv:1202.4477v1 [math-ph]. (2012) MR3035882
- Sachs, R. K., Wu, H., General Relativity for Mathematicians, 1977, Springer-Verlag, New York, Heidelberg, Berlin, (1977) Zbl0373.53001MR0503498
- Saunders, D. J., The Geometry of Jet Bundles, 1989, Cambridge University Press, New York, London, (1989) Zbl0665.58002
- Udrişte, C., Matei, L., Lagrange-Hamilton Theories (in Romanian), 2008, Geometry Balkan Press, Bucharest, (2008)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.