[For the entire collection see Zbl 0742.00067.]The author formulates several theorems about invariant orders in Lie groups (without proofs). The main theorem: a simply connected Lie group admits a continuous invariant order if and only if its Lie algebra contains a pointed invariant cone. V. M. Gichev has proved this theorem for solvable simply connected Lie groups (1989). If is solvable and simply connected then all pointed invariant cones in are global in (a Lie wedge is said to...
To a pair of a Lie group and an open elliptic convex cone in its Lie algebra one associates a complex semigroup which permits an action of by biholomorphic mappings. In the case where is a vector space is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain is Stein is and only if it is of the form , with convex, that each holomorphic function on extends to the smallest biinvariant Stein domain containing ,...
In the first section of this paper we give a characterization of those closed convex cones (wedges) in the Lie algebra which are invariant under the maximal compact subgroup of the adjoint group and which are controllable in the associated simply connected Lie group , i.e., for which the subsemigroup generated by the exponential image of agrees with the whole group (Theorem 13). In Section 2 we develop some algebraic tools concerning real root decompositions with respect to compactly...
Let be a real symmetric space and the corresponding decomposition of the Lie algebra. To each open -invariant domain consisting of real ad-diagonalizable elements, we associate a complex manifold which is a curved analog of a tube domain with base , and we have a natural action of by holomorphic mappings. We show that is a Stein manifold if and only if is convex, that the envelope of holomorphy is schlicht and that -invariant plurisubharmonic functions correspond to convex -invariant...
Download Results (CSV)