On the complex geometry of invariant domains in complexified symmetric spaces
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 1, page 177-225
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNeeb, Karl-Hermann. "On the complex geometry of invariant domains in complexified symmetric spaces." Annales de l'institut Fourier 49.1 (1999): 177-225. <http://eudml.org/doc/75332>.
@article{Neeb1999,
abstract = {Let $M=G/H$ be a real symmetric space and $\{\frak g\}=\{\frak h\} + \{\frak q\}$ the corresponding decomposition of the Lie algebra. To each open $H$-invariant domain $D_\{\frak q\}\subseteq i\{\frak q\}$ consisting of real ad-diagonalizable elements, we associate a complex manifold $\Xi (D_\{\frak q\})$ which is a curved analog of a tube domain with base $D_\{\frak q\}$, and we have a natural action of $G$ by holomorphic mappings. We show that $\Xi (D_\{\frak q\})$ is a Stein manifold if and only if $D_\{\frak q\}$ is convex, that the envelope of holomorphy is schlicht and that $G$-invariant plurisubharmonic functions correspond to convex $H$-invariant functions on $D_\{\frak q\}$. Finally we apply these results to obtain an integral decomposition for $G$-invariant Hilbert spaces of holomorphic functions on $\Xi (D_\{\frak q\})$.},
author = {Neeb, Karl-Hermann},
journal = {Annales de l'institut Fourier},
keywords = {semigroup; Lie group; compact symmetric group; compact symmetric space; plurisubharmonic functions; representation theory; causal symmetric spaces},
language = {eng},
number = {1},
pages = {177-225},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the complex geometry of invariant domains in complexified symmetric spaces},
url = {http://eudml.org/doc/75332},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Neeb, Karl-Hermann
TI - On the complex geometry of invariant domains in complexified symmetric spaces
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 1
SP - 177
EP - 225
AB - Let $M=G/H$ be a real symmetric space and ${\frak g}={\frak h} + {\frak q}$ the corresponding decomposition of the Lie algebra. To each open $H$-invariant domain $D_{\frak q}\subseteq i{\frak q}$ consisting of real ad-diagonalizable elements, we associate a complex manifold $\Xi (D_{\frak q})$ which is a curved analog of a tube domain with base $D_{\frak q}$, and we have a natural action of $G$ by holomorphic mappings. We show that $\Xi (D_{\frak q})$ is a Stein manifold if and only if $D_{\frak q}$ is convex, that the envelope of holomorphy is schlicht and that $G$-invariant plurisubharmonic functions correspond to convex $H$-invariant functions on $D_{\frak q}$. Finally we apply these results to obtain an integral decomposition for $G$-invariant Hilbert spaces of holomorphic functions on $\Xi (D_{\frak q})$.
LA - eng
KW - semigroup; Lie group; compact symmetric group; compact symmetric space; plurisubharmonic functions; representation theory; causal symmetric spaces
UR - http://eudml.org/doc/75332
ER -
References
top- [AL92] H. AZAD, and J.-J. LOEB, Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces, Indag. Math., N.S., 3(4) (1992), 365-375. Zbl0777.32008MR94a:32014
- [DN93] N. DÖRR, and K.-H. NEEB, On wedges in Lie triple systems and ordered symmetric spaces, Geometriae Ded., 46 (1993), 1-34. Zbl0781.53040MR94m:17004
- [Hel84] S. HELGASON, Groups and geometric analysis, Acad. Press, London, 1984.
- [HÓ96] J. HILGERT, G. ÓLAFSSON, Causal Symmetric Spaces, Geometry and Harmonic Analysis, Acad. Press, 1996. Zbl0931.53004
- [Hö73] L. HÖRMANDER, An introduction to complex analysis in several variables, North-Holland, 1973. Zbl0271.32001
- [Kr97] B. KRÖTZ, The Plancherel Theorem for Biinvariant Hilbert Spaces, Publ. R.I.M.S., to appear. Zbl0999.22018
- [KN96] B. KRÖTZ and K.-H. NEEB, On hyperbolic cones and mixed symmetric spaces, Journal of Lie Theory, 6:1 (1996), 69-146. Zbl0860.22004MR97k:17007
- [KNÓ97] B. KRÖTZK.-H. NEEB, and G. ÓLAFSSON, Spherical Representations and Mixed Symmetric Spaces, Journal of Representation Theory, 1 (1997), 424-461. Zbl0887.22022MR99a:22031
- [Las78] M. LASALLE, Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symétrique compact, Ann. Sci. Ec. Norm. Sup., 4e série, 11 (1978), 167-210. Zbl0452.43011
- [Lo69] O. LOOS, Symmetric Spaces I: General Theory, Benjamin, New York, Amsterdam, 1969. Zbl0175.48601MR39 #365a
- [MaMo60] Y. MATSUSHIMA, and A. MORIMOTO, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, 88 (1960), 137-155. Zbl0094.28104MR23 #A1061
- [Ne96a] K.-H. NEEB, Invariant Convex Sets and Functions in Lie Algebras, Semigroup Forum, 53 (1996), 230-261. Zbl0873.17009MR97j:17033
- [Ne96b] K.-H. NEEB, On some classes of multiplicity free representations, Manuscripta Math., 92 (1997), 389-407. Zbl0882.43002MR99e:22010
- [Ne97] K.-H. NEEB, Representation theory and convexity, submitted. Zbl0964.22004
- [Ne98] K.-H. NEEB, On the complex and convex geometry of Ol'shanskiĠ semigroups, Annales de l'Institut Fourier, 48-1 (1998), 149-203. Zbl0901.22003MR99e:22013
- [Ne99] K.-H. NEEB, Holomorphy and Convexity in Lie Theory, Expositions in Mathematics, de Gruyter, 1999, to appear. Zbl0936.22001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.