On the complex geometry of invariant domains in complexified symmetric spaces

Karl-Hermann Neeb

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 1, page 177-225
  • ISSN: 0373-0956

Abstract

top
Let M = G / H be a real symmetric space and 𝔤 = 𝔥 + 𝔮 the corresponding decomposition of the Lie algebra. To each open H -invariant domain D 𝔮 i 𝔮 consisting of real ad-diagonalizable elements, we associate a complex manifold Ξ ( D 𝔮 ) which is a curved analog of a tube domain with base D 𝔮 , and we have a natural action of G by holomorphic mappings. We show that Ξ ( D 𝔮 ) is a Stein manifold if and only if D 𝔮 is convex, that the envelope of holomorphy is schlicht and that G -invariant plurisubharmonic functions correspond to convex H -invariant functions on D 𝔮 . Finally we apply these results to obtain an integral decomposition for G -invariant Hilbert spaces of holomorphic functions on Ξ ( D 𝔮 ) .

How to cite

top

Neeb, Karl-Hermann. "On the complex geometry of invariant domains in complexified symmetric spaces." Annales de l'institut Fourier 49.1 (1999): 177-225. <http://eudml.org/doc/75332>.

@article{Neeb1999,
abstract = {Let $M=G/H$ be a real symmetric space and $\{\frak g\}=\{\frak h\} + \{\frak q\}$ the corresponding decomposition of the Lie algebra. To each open $H$-invariant domain $D_\{\frak q\}\subseteq i\{\frak q\}$ consisting of real ad-diagonalizable elements, we associate a complex manifold $\Xi (D_\{\frak q\})$ which is a curved analog of a tube domain with base $D_\{\frak q\}$, and we have a natural action of $G$ by holomorphic mappings. We show that $\Xi (D_\{\frak q\})$ is a Stein manifold if and only if $D_\{\frak q\}$ is convex, that the envelope of holomorphy is schlicht and that $G$-invariant plurisubharmonic functions correspond to convex $H$-invariant functions on $D_\{\frak q\}$. Finally we apply these results to obtain an integral decomposition for $G$-invariant Hilbert spaces of holomorphic functions on $\Xi (D_\{\frak q\})$.},
author = {Neeb, Karl-Hermann},
journal = {Annales de l'institut Fourier},
keywords = {semigroup; Lie group; compact symmetric group; compact symmetric space; plurisubharmonic functions; representation theory; causal symmetric spaces},
language = {eng},
number = {1},
pages = {177-225},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the complex geometry of invariant domains in complexified symmetric spaces},
url = {http://eudml.org/doc/75332},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Neeb, Karl-Hermann
TI - On the complex geometry of invariant domains in complexified symmetric spaces
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 1
SP - 177
EP - 225
AB - Let $M=G/H$ be a real symmetric space and ${\frak g}={\frak h} + {\frak q}$ the corresponding decomposition of the Lie algebra. To each open $H$-invariant domain $D_{\frak q}\subseteq i{\frak q}$ consisting of real ad-diagonalizable elements, we associate a complex manifold $\Xi (D_{\frak q})$ which is a curved analog of a tube domain with base $D_{\frak q}$, and we have a natural action of $G$ by holomorphic mappings. We show that $\Xi (D_{\frak q})$ is a Stein manifold if and only if $D_{\frak q}$ is convex, that the envelope of holomorphy is schlicht and that $G$-invariant plurisubharmonic functions correspond to convex $H$-invariant functions on $D_{\frak q}$. Finally we apply these results to obtain an integral decomposition for $G$-invariant Hilbert spaces of holomorphic functions on $\Xi (D_{\frak q})$.
LA - eng
KW - semigroup; Lie group; compact symmetric group; compact symmetric space; plurisubharmonic functions; representation theory; causal symmetric spaces
UR - http://eudml.org/doc/75332
ER -

References

top
  1. [AL92] H. AZAD, and J.-J. LOEB, Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces, Indag. Math., N.S., 3(4) (1992), 365-375. Zbl0777.32008MR94a:32014
  2. [DN93] N. DÖRR, and K.-H. NEEB, On wedges in Lie triple systems and ordered symmetric spaces, Geometriae Ded., 46 (1993), 1-34. Zbl0781.53040MR94m:17004
  3. [Hel84] S. HELGASON, Groups and geometric analysis, Acad. Press, London, 1984. 
  4. [HÓ96] J. HILGERT, G. ÓLAFSSON, Causal Symmetric Spaces, Geometry and Harmonic Analysis, Acad. Press, 1996. Zbl0931.53004
  5. [Hö73] L. HÖRMANDER, An introduction to complex analysis in several variables, North-Holland, 1973. Zbl0271.32001
  6. [Kr97] B. KRÖTZ, The Plancherel Theorem for Biinvariant Hilbert Spaces, Publ. R.I.M.S., to appear. Zbl0999.22018
  7. [KN96] B. KRÖTZ and K.-H. NEEB, On hyperbolic cones and mixed symmetric spaces, Journal of Lie Theory, 6:1 (1996), 69-146. Zbl0860.22004MR97k:17007
  8. [KNÓ97] B. KRÖTZK.-H. NEEB, and G. ÓLAFSSON, Spherical Representations and Mixed Symmetric Spaces, Journal of Representation Theory, 1 (1997), 424-461. Zbl0887.22022MR99a:22031
  9. [Las78] M. LASALLE, Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symétrique compact, Ann. Sci. Ec. Norm. Sup., 4e série, 11 (1978), 167-210. Zbl0452.43011
  10. [Lo69] O. LOOS, Symmetric Spaces I: General Theory, Benjamin, New York, Amsterdam, 1969. Zbl0175.48601MR39 #365a
  11. [MaMo60] Y. MATSUSHIMA, and A. MORIMOTO, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, 88 (1960), 137-155. Zbl0094.28104MR23 #A1061
  12. [Ne96a] K.-H. NEEB, Invariant Convex Sets and Functions in Lie Algebras, Semigroup Forum, 53 (1996), 230-261. Zbl0873.17009MR97j:17033
  13. [Ne96b] K.-H. NEEB, On some classes of multiplicity free representations, Manuscripta Math., 92 (1997), 389-407. Zbl0882.43002MR99e:22010
  14. [Ne97] K.-H. NEEB, Representation theory and convexity, submitted. Zbl0964.22004
  15. [Ne98] K.-H. NEEB, On the complex and convex geometry of Ol'shanskiĠ semigroups, Annales de l'Institut Fourier, 48-1 (1998), 149-203. Zbl0901.22003MR99e:22013
  16. [Ne99] K.-H. NEEB, Holomorphy and Convexity in Lie Theory, Expositions in Mathematics, de Gruyter, 1999, to appear. Zbl0936.22001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.