The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Non-invertible Pesin theory is developed for a class of piecewise smooth interval maps which may have unbounded derivative, but satisfy a property analogous to . The critical points are not required to verify a non-flatness condition, so the results are applicable to maps with flat critical points. If the critical points are too flat, then no absolutely continuous invariant probability measure can exist. This generalises a result of Benedicks and Misiurewicz.
We use Pesin theory to study possible equilibrium measures for a broad class of piecewise monotone maps of the interval and a broad class of potentials.
We show that for entire maps of the form z ↦ λexp(z) such that the orbit of zero is bounded and Lebesgue almost every point is transitive, no absolutely continuous invariant probability measure can exist. This answers a long-standing open problem.
Download Results (CSV)